Abstract
The vibration of a floating roof hydroelastically coupled with nonlinear sloshing is analyzed. Influences of the nonlinearity of sloshing on the magnitude of stresses arising in a floating roof are investigated. Numerical results show that (i) neglecting the nonlinearity of sloshing significantly underestimates the magnitude of the stresses, even when the nonlinear effect is small for the roof displacement; and (ii) the underestimation associated with the use of the linear approximation becomes more marked with the decrease in the liquid depth. The reasons for these results are explained based on the fact that in the nonlinear sloshing, the modal component with circumferential wave number 2 is excited.