Developing Multimodal Adaptation Algorithm for Mobility Impaired Users by Evaluating Their Hand Strength

Abstract
Recent research on interactive electronic systems like computer, digital TV, smartphones can improve the quality of life of many disabled and elderly people by helping them to engage more fully to the world. Previously, a simulator was developed that reflects the effect of impairment on interaction with electronic devices and thus helps designers in developing accessible systems. In this article, the scope of the simulator has been extended to multiple pointing devices. The way that hand strength affects pointing performance of people with and without mobility impairment in graphical user interfaces was investigated for four different input modalities, and a set of linear equations to predict pointing time and average number of submovements for different devices was developed. These models were used to develop an adaptation algorithm to facilitate pointing in electronic interfaces by users with motor impairment using different pointing devices. The algorithm attracts a pointer when it is near a target and thus helps to reduce random movement during homing and clicking. The algorithm was optimized using the simulator and then tested on a real-life application with multiple distractors involving three different pointing devices. The algorithm significantly reduces pointing time for different input modalities.

This publication has 15 references indexed in Scilit: