Argon Physisorption as Structural Probe for Endohedrally Doped Silicon Clusters

Abstract
We report on an element-dependent critical size for argon physisorption at 80 K on transition-metal-doped silicon clusters. Argon does not attach to elemental silicon clusters but only to surface-located transition-metal atoms. Thus physisorption provides structural information. Specifically, the minimal cluster size for the formation of endohedral singly metal-doped silicon cages has been determined. The observed critical size for doubly doped silicon clusters indicates that larger caged molecules can be formed, eventually leading to the growth of metal-doped silicon nanorods.