The rheology of solutions of associating polymers: Comparison of experimental behavior with transient network theory

Abstract
The properties of aqueous solutions of model HEUR associative thickeners under dynamic and steady shear have been studied as a function of concentration, molecular weight, temperature, and hydrophobic end‐cap length. It is shown that solutions of AT behave as near perfect Maxwell fluids inasmuch that Cole–Cole plots of the dynamic moduli are almost exactly semi‐circular. An Arrhenius law temperature dependence of the static viscosity and relaxation time is also observed, providing confirmation of a single relaxation process. In certain other respects, AT solutions show more complex behavior, e.g., the Cox–Merz rule is not obeyed, with the steady shear viscosity showing a weaker dependence on shear rate than does the complex viscosity upon frequency. Furthermore, weak shear thickening is seen to precede shear thinning in steady shear. The above results are consistent with the predictions of a transient network theory presented recently by Tanaka and Edwards and Jenkins (generalized Green–Tobolsky theory). ...