A contemporary review of stereotactic radiotherapy: Inherent dosimetric complexities and the potential for detriment

Abstract
The advantages of highly localised, conformal treatments achievable with stereotactic radiotherapy (SRT) are increasingly being extended to extracranial sites as stereotactic body radiotherapy with advancements in imaging and beam collimation. One of the challenges in stereotactic treatment lies in the significant complexities associated with small field dosimetry and dose calculation. This review provides a comprehensive overview of the complexities associated with stereotactic radiotherapy and the potential for detriment. This study is based on a comprehensive review of literature accessible via PubMed and other sources, covering stereotactic radiotherapy, small-field dosimetry and dose calculation. Several key issues were identified in the literature. They pertain to dose prescription, dose measurement and dose calculation within and beyond the treatment field. Field-edge regions and penumbrae occupy a significant portion of the total field size. Spectral and dosimetric characteristics are difficult to determine and are compounded by effects of tissue inhomogeneity. Measurement of small-fields is made difficult by detector volume averaging and energy response. Available dosimeters are compared, and emphasis is given to gel dosimetry which offers the greatest potential for three-dimensional small-field dosimetry. The limitations of treatment planning system algorithms as applied to small-fields (particularly in the presence of heterogeneities) is explained, and a review of Monte Carlo dose calculation is provided, including simplified treatment planning implementations. Not incorporated into treatment planning, there is evidence that far from the primary field, doses to patients (and corresponding risks of radiocarcinogenesis) from leakage/scatter in SRT are similar to large fields. Improved knowledge of dosimetric issues is essential to the accurate measurement and calculation of dose as well as the interpretation and assessment of planned and delivered treatments. This review highlights such issues and the potential benefit that may be gained from Monte Carlo dose calculation and verification via three-dimensional dosimetric methods (such as gel dosimetry) being introduced into routine clinical practice.