Effect of Cyclic Precalcification of Nanotubular TiO2Layer on the Bioactivity of Titanium Implant

Abstract
The objective of this study is to investigate the effect of cyclic precalcification treatment to impart bioactive properties for titanium implants. Before precalcification, the titanium implants were subjected to blasting using hydroxyapatite (HAp), a resorbable blasting medium (RBM treated), and anodized using an electrolyte containing glycerol, H2O, and NH4F. Precalcification treatment was performed by two different methods, namely, continuous immersion treatment (CIT) and alternate immersion treatment (AIT). In CIT, the RBM treated and anodized titanium implants were immersed in 0.05 M NaH2PO4solution at 80°C and saturated Ca(OH)2solution at 100°C for 20 min, whereas during AIT, they were immersed alternatively in both solutions for 1 min for 20 cycles. Anodizing of the titanium implants enables the formation of self-organized TiO2nanotubes. Cyclic precalcification treatment imparts a better bioactive property and enables an increase in activation level of the titanium implants. The removal torque values of the RBM treated, CIT treated, and AIT treated titanium implants are10.8±3.7 Ncm,17.5±3.5 Ncm, and28.1±2.4 Ncm, respectively. The findings of the study indicate the cyclic precalcification in an effective surface treatment method that would help accelerate osseointegration and impart bioactive property of titanium implants.
Funding Information
  • Ministry of Education, Science and Technology (2010-0013251, 2012R1A2A2A01012671)