Wedge transducer design for two-dimensional ultrasonic manipulation in a microfluidic chip

Abstract
We analyze and optimize the design of wedge transducers used for the excitation of resonances in the channel of a microfluidic chip in order to efficiently manipulate particles or cells in more than one dimension. The design procedure is based on (1) theoretical modeling of acoustic resonances in the transducer-chip system and calculation of the force fields in the fluid channel, (2) full-system resonance characterization by impedance spectroscopy and (3) image analysis of the particle distribution after ultrasonic manipulation. We optimize the transducer design in terms of actuation frequency, wedge angle and placement on top of the chip, and we characterize and compare the coupling effects in orthogonal directions between single- and dual-frequency ultrasonic actuation. The design results are verified by demonstrating arraying and alignment of particles in two dimensions. Since the device is compatible with high-resolution optical microscopy, the target application is dynamic cell characterization combined with improved microfluidic sample transport.