β common receptor inactivation attenuates myeloproliferative disease in Nf1 mutant mice

Abstract
Neurofibromatosis type 1 (NF1) syndrome is caused by germline mutations in the NF1 tumor suppressor, which encodes neurofibromin, a GTPase activating protein for Ras. Children with NF1 are predisposed to juvenile myelomonocytic leukemia (JMML) and lethally irradiated mice given transplants with homozygous Nf1 mutant (Nf1−/−) hematopoietic stem cells develop a fatal myeloproliferative disorder (MPD) that models JMML. We investigated the requirement for signaling through the GM-CSF receptor to initiate and sustain this MPD by generating Nf1 mutant hematopoietic cells lacking the common β chain (Beta c) of the GM-CSF receptor. Mice reconstituted with Nf1−/−, beta c−/− stem cells did not develop evidence of MPD despite the presence of increased number of immature hematopoietic progenitors in the bone marrow. Interestingly, when the Mx1-Cre transgene was used to inactivate a conditional Nf1 mutant allele in hematopoietic cells, concomitant loss of beta c−/−reduced the severity of the MPD, but did not abrogate it. Whereas inhibiting GM-CSF signaling may be of therapeutic benefit in JMML, our data also demonstrate aberrant proliferation of Nf1−/−myeloid progenitors that is independent of signaling through the GM-CSF receptor.