Acute Effect of Sidestream Cigarette Smoke Extract on Vascular Endothelial Function

Abstract
Acute exposure to passive smoking adversely affects vascular function by promoting oxidative stress and endothelial dysfunction. However, it is not known whether tobacco sidestream (SS) smoke has a greater deleterious effect on the endothelium than non-tobacco SS smoke and whether these effects are related to nicotinic endothelial stimulation. To test these hypotheses, endothelial-dependent relaxation and superoxide anion production were assessed in isolated rat aortas incubated with tobacco SS smoke, non-tobacco SS smoke, or pure nicotine. Tobacco SS smoke decreased the maximal relaxation to acetylcholine (Ach) from 79 ± 6% to 57 ± 7.3% (% inhibition of phenylephrine-induced plateau, P < 0.001) and increased superoxide anion production from 31 ± 9.7 to 116 ± 24 count/10sec/mg (P < 0.01, lucigenin-enhanced chemiluminescence technique). The non-tobacco SS smoke extract had no significant effect on the response to Ach but increased superoxide anion production in the aortic wall to 133 ± 2 count/10sec/mg (P < 0.001). Furthermore, concentration-response curves to Ach and superoxide production remained unaltered with nicotine (0.001, 0.01, or 0.1 mM). In conclusion, despite similar increases in vascular wall superoxide production with tobacco and non-tobacco SS smoke, only the tobacco SS smoke extracts affected endothelium-dependent vasorelaxation. Nicotine alone does not reproduce the effects seen with tobacco SS smoke, suggesting that the acute endothelial toxicity of passive smoking cannot simply be ascribed to a nicotine-dependent mechanism.