Edge elastic properties of defect-free single-layer graphene sheets

Abstract
An energetic model is proposed to describe the edge elastic properties of defect-free single-layer graphene sheets. Simulations with the adaptive intermolecular reactive empirical bond order potential are used to extract the edge stress and edge moduli for different edges structures, namely, zigzag and armchair edges, zigzag and armchair edges terminated with hydrogen, and reconstructed zigzag and armchair edges. It is found that the properties of graphene are sensitively dependent on the edge structures; armchair and zigzag edges with and without hydrogen termination are in compression, while reconstructed edges are in tension.