Polynomial Chaos Decomposition for the Simulation of Non-Gaussian Nonstationary Stochastic Processes

Abstract
A method is developed for representing and synthesizing random processes that have been specified by their two-point correlation function and their nonstationary marginal probability density functions. The target process is represented as a polynomial transformation of an appropriate Gaussian process. The target correlation structure is decomposed according to the Karhunen–Loève expansion of the underlying Gaussian process. A sequence of polynomial transformations in this process is then used to match the one-point marginal probability density functions. The method results in a representation of a stochastic process that is particularly well suited for implementation with the spectral stochastic finite element method as well as for general purpose simulation of realizations of these processes.

This publication has 7 references indexed in Scilit: