Experimental study and modelling approaches for the thermal conductivity evolution of hydrating cement paste

Abstract
Thermal stresses due to hydration heat release within concrete structures can lead to early age cracking particularly in cases of massive structures. In order to prevent, minimise and avoid this, a good knowledge of the evolution of cement-based material heat transfer properties at early stages of hydration is essential. In order to address the problem of the evolution of the thermal conductivity of fresh cement paste, two models developed by the authors are discussed: first, the ‘apparent’ thermal conductivity is calculated, assuming the fresh cement paste to be a multiphase material, which makes it possible to consider the material chemical evolution. The second modelling approach is based on the theory of heat and mass transfer within non-saturated porous media. The second modelling results appear to fit the experimental results better.