Acclimation of Rice Photosynthesis to Irradiance under Field Conditions

Abstract
Acclimation to irradiance was measured in terms of light-saturated photosynthetic carbon assimilation rates (Pmax), Rubisco, and pigment content in mature field-grown rice (Oryza sativa) plants in tropical conditions. Measurements were made at different positions within the canopy alongside irradiance and daylight spectra. These data were compared with a second experiment in which acclimation to irradiance was assessed in uppermost leaves within whole-plant shading regimes (10% low light [LL], 40% medium light [ML], and 100% high light [HL] of full natural sunlight). Two varieties, japonica (tropical; new plant type [NPT]) and indica (IR72) were compared. Values for Rubisco amount, chlorophyll a/b, and Pmax all declined from the top to the base of the canopy. In the artificial shading experiment, acclimation of Pmax (measured at 350 μL L−1 CO2) occurred between LL and ML for IR72 with no difference observed between ML and HL. The Rubisco amount increased between ML and HL in IR72. A different pattern was seen for NPT with higher Pmax (measured at 350 μL L−1CO2) at LL than IR72 and some acclimation of this parameter between ML and HL. Rubisco levels were higher in NPT than IR72 contrasting with Pmax. Comparison of data from both experiments suggests a leaf aging effect between the uppermost two leaf positions, which was not a result of irradiance acclimation. Results are discussed in terms of: (a) acclimation of photosynthesis and radiation use efficiency at high irradiance in rice, and (b) factors controlling photosynthetic rates of leaves within the canopy.

This publication has 39 references indexed in Scilit: