Study of Magnetic Field-Assisted ED Machining of Metal Matrix Composites

Abstract
The present study deals with an investigation of the hybrid electric discharge (ED) machining process executed in a magnetic field for improving process performance. Previous magnetic field-assisted electric discharge machining (MFAEDM) techniques, however, are limited to use with a class of magnetic workpieces. In this particular study, the magnetic field was coupled with the conventional EDM plasma zone to test the hybrid process on Al-based metal matrix composites (MMCs). The machining parameters, for instance, peak current as well as duration of pulse-on were selected to nail down thereafter effects on the response parameters like the material removal rate (MRR) and the surface integrity. The experimental results show an improvement of 12.9% MRR and reduction in recast layer formation at higher spark energy in the magnetic field environment. As the experimental outcome implied that the MFAEDM imparted appreciable process stability, a highly efficient pertinent process of EDM with high quality of the machined surface could be accomplished to satisfy modern industrial applications.