Designing Higher Surface Area Metal–Organic Frameworks: Are Triple Bonds Better Than Phenyls?

Abstract
We have synthesized, characterized, and computationally validated the high Brunauer–Emmett–Teller surface area and hydrogen uptake of a new, noncatenating metal–organic framework (MOF) material, NU-111. Our results imply that replacing the phenyl spacers of organic linkers with triple-bond spacers is an effective strategy for boosting molecule-accessible gravimetric surface areas of MOFs and related high-porosity materials.