Responses of Saccharomyces cerevisiae to nitrogen starvation in wine alcoholic fermentation

Abstract
Nitrogen is an important nutrient in alcoholic fermentation because its starvation affects both fermentation kinetics and the formation of yeast metabolites. In most alcoholic fermentations, yeasts have to ferment in nitrogen-starved conditions, which requires modifications of cell functions to maintain a high sugar flux and enable cell survival for long periods in stressful conditions. In this review, we present an overview of our current understanding of the responses of the wine yeast Saccharomyces cerevisiae to variations of nitrogen availability. Adaptation to nitrogen starvation involves changes in the activity of signaling pathways such as target of rapamycin (TOR) and nitrogen catabolite repression (NCR), which are important for the remodeling of gene expression and the establishment of stress responses. Upon starvation, protein degradation pathways involving autophagy and the proteasome play a major role in nitrogen recycling and the adjustment of cellular activity. Recent progress in the understanding of the role of these mechanisms should enable advances in fermentation management and the design of novel targets for the selection or improvement of yeast strains.

This publication has 88 references indexed in Scilit: