An altered fibronectin matrix induces anoikis of human squamous cell carcinoma cells by suppressing integrin alpha v levels and phosphorylation of FAK and ERK

Abstract
Fibronectin regulates many cellular processes, including migration, proliferation, differentiation, and survival. Previously, we showed that squamous cell carcinoma (SCC) cell aggregates escape suspension-induced, p53-mediated anoikis by engaging in fibronectin-mediated survival signals through focal adhesion kinase (FAK). Here we report that an altered matrix, consisting of a mutated, nonfunctional high-affinity heparin-binding domain and the V region of fibronectin (V+H), induced anoikis in human SCC cells; this response was blocked by inhibitors of caspase-8 and caspase-3. Anoikis was mediated by downregulation of integrin alpha v in a panel of SCC cells and was shown to be proteasome-dependent. Overexpression of integrin alpha v or FAK inhibited the increase in caspase-3 activation and apoptosis, whereas suppression of alpha v or FAK triggered a further significant increase in apoptosis, indicating that the apoptosis was mediated by suppression of integrin alpha v levels and dephosphorylation of FAK. Treatment with V+H decreased the phosphorylation of extracellular signal-regulated kinase (ERK) 1 and 2, and direct activation of ERK by constitutively active MEK1, an ERK kinase, increased ERK1 and ERK2 phosphorylation and inhibited the increase in apoptosis induced by V+H. ERK acted downstream from alpha v and FAK signals, since alpha v and FAK overexpression inhibited both the decrease in ERK phosphorylation and the increase in anoikis triggered by V+H. These findings provide evidence that mutations in the high-affinity heparin-binding domain in association with the V region of fibronectin, or altered fibronectin matrices, induce anoikis in human SCC cells by modulating integrin alpha v-mediated phosphorylation of FAK and ERK.