Identification of GBV-D, a Novel GB-like Flavivirus from Old World Frugivorous Bats (Pteropus giganteus) in Bangladesh

Abstract
Bats are reservoirs for a wide range of zoonotic agents including lyssa-, henipah-, SARS-like corona-, Marburg-, Ebola-, and astroviruses. In an effort to survey for the presence of other infectious agents, known and unknown, we screened sera from 16 Pteropus giganteus bats from Faridpur, Bangladesh, using high-throughput pyrosequencing. Sequence analyses indicated the presence of a previously undescribed virus that has approximately 50% identity at the amino acid level to GB virus A and C (GBV-A and -C). Viral nucleic acid was present in 5 of 98 sera (5%) from a single colony of free-ranging bats. Infection was not associated with evidence of hepatitis or hepatic dysfunction. Phylogenetic analysis indicates that this first GBV-like flavivirus reported in bats constitutes a distinct species within the Flaviviridae family and is ancestral to the GBV-A and -C virus clades. Bats are important reservoirs for emerging zoonotic viruses with significant impact on human health including lyssaviruses, filoviruses, henipaviruses and coronaviruses. Opportunities for transmission to humans are particularly prominent in countries like Bangladesh, where people live in close association with bats. Whereas previous studies of bats have employed assays that test for known pathogens, we present the first application of an unbiased molecular approach to pathogen discovery in this reservoir for emerging zoonotic disease. Unbiased pyrosequencing of serum from Pteropus giganteus bats enabled identification of a novel flavivirus related to Hepatitis C and GB viruses. Viral nucleic acid was present in 5 of 98 (5%) sera, and in the saliva of one animal. Sequence identification of two strains of the virus, tentatively named GBV-D, suggests P. giganteus as a natural reservoir. Detection of viral nucleic acid in saliva provides a plausible route for zoonotic transmission. Phylogenetic analysis indicates that GBV-D is ancestral to GBV-A and -C, and separate from the recently classified genus Hepacivirus. Our findings provide new insight into the range of known hosts for GB-like viruses and demonstrate the power of unbiased sequencing to characterize the diversity of potentially zoonotic pathogens carried by bats and other reservoirs.