Cerulein upregulates ICAM-1 in pancreatic acinar cells, which mediates neutrophil adhesion to these cells

Abstract
Neutrophil infiltration into the pancreas is a key event in pancreatitis. Here we show that intercellular adhesion molecule-1 (ICAM-1), which regulates neutrophil adhesion, is present on rat pancreatic acinar cells, is upregulated by a hormone (cerulein) and mediates direct binding of neutrophils to acinar cells. ICAM-1 was upregulated in pancreas of rats with experimental pancreatitis induced by supramaximal doses of cerulein. Furthermore, cerulein time and dose dependently stimulated expression of ICAM-1 mRNA and protein in isolated pancreatic acinar cells. Inhibitory analysis showed that activation of transcription factor nuclear factor-κB (NF-κB) was involved in ICAM-1 upregulation by cerulein, but NF-κB did not mediate basal expression of ICAM-1 mRNA in acinar cells. With an adhesion assay, we found that neutrophils bind to isolated pancreatic acinar cells and that cerulein upregulates the extent of adhesion. Neutralizing ICAM-1 antibody blocked neutrophil binding to both control and cerulein-stimulated acinar cells, suggesting ICAM-1 involvement in this adhesion. Thus the acinar cell is capable of targeting neutrophils to its surface, a process that may be important for inflammatory and cell death responses in pancreatitis and other pancreatic disorders.