Genome-Wide Location Analysis Reveals Distinct Transcriptional Circuitry by Paralogous Regulators Foxa1 and Foxa2

Abstract
Gene duplication is a powerful driver of evolution. Newly duplicated genes acquire new roles that are relevant to fitness, or they will be lost over time. A potential path to functional relevance is mutation of the coding sequence leading to the acquisition of novel biochemical properties, as analyzed here for the highly homologous paralogs Foxa1 and Foxa2 transcriptional regulators. We determine by genome-wide location analysis (ChIP-Seq) that, although Foxa1 and Foxa2 share a large fraction of binding sites in the liver, each protein also occupies distinct regulatory elements in vivo. Foxa1-only sites are enriched for p53 binding sites and are frequently found near genes important to cell cycle regulation, while Foxa2-restricted sites show only a limited match to the forkhead consensus and are found in genes involved in steroid and lipid metabolism. Thus, Foxa1 and Foxa2, while redundant during development, have evolved divergent roles in the adult liver, ensuring the maintenance of both genes during evolution. The duplication of a gene from a common ancestor, resulting in two copies known as paralogs, plays an important role in evolution. Newly duplicated genes must acquire new functions in order to remain relevant, otherwise they are lost via mutation over time. We have performed genome-wide location analysis (ChIP–Seq) in adult liver to examine the differences between two paralogous DNA binding proteins, Foxa1 and Foxa2. While Foxa1 and Foxa2 bind a number of common genomic locations, each protein also localizes to distinct regulatory regions. Sites specific for Foxa1 also contain a DNA motif bound by tumor suppressor p53 and are found near genes important to cell cycle regulation, while Foxa2-only sites are found near genes essential to steroid and lipid metabolism. Hence, Foxa1 and Foxa2 have developed unique functions in adult liver, contributing to the maintenance of both genes during evolution.