Wnt signaling and the activation of myogenesis in mammals

Abstract
In the amniote embryos, specification of skeletal myoblasts occurs in the paraxial mesoderm in response to a number of signaling molecules produced by neighboring tissues such as neural tube, notochord and dorsal ectoderm. Candidate molecules for this complex signaling activity include Sonic hedgehog, Wnts and Noggin as positive activators and BMP4 as a possible inhibitor. Recently, the receptors and the post‐receptor pathways for Sonic hedgehog and Wnts have been characterized, and this has opened up the possibility of linking these signaling events to the activation of myogenic regulatory factor genes such as Myf5 and MyoD and functionally related genes such as Pax3. Here we focus on the role of Wnts, their putative receptors Frizzled and the soluble antagonist Frzb1 in regulating mammalian myogenesis. Although it is becoming evident that the signaling downstream of Frizzled receptors is much more complex than anticipated, it is conceivable that it may lead to transcriptional activation of Myf5 and MyoD and to initiation of myogenesis. However, the fact that both Wnts and Sonic hedgehog have a strong effect on cell proliferation and survival suggests that they may contribute to the overall process of myogenesis by a combination of these different biological activities.