Abstract
The manufacturers of high speed turbomachinery are concerned with the accurate prediction of rotor response and stability. One major factor in the placement of system critical speeds and amplification factors is the stiffness and damping of both the fluid-film bearing and support structure. Typical calculated results for tilting-pad fluid-film bearings have neglected the influence of the point or line contact of the pivot support for the individual pads. This paper will review the equations developed considering the Hertzian contact stress and deformation theory and present the equations for pivot stiffness necessary for inclusion in tilting pad bearing computer programs. In addition, the influence of various standard pivot designs will be compared for typical fluid-film bearing stiffness and damping characteristics.