Anxiety-like effects induced by acute fluoxetine, sertraline or m-CPP treatment are reversed by pretreatment with the 5-HT2C receptor antagonist SB-242084 but not the 5-HT1A receptor antagonist WAY-100635

Abstract
The possible role of 5-HT1A and 5-HT2C receptors in the anxiety induced by fear, acute treatment with SSRI antidepressants or the 5-HT receptor agonist m-CPP were tested in the social interaction anxiety test in male Sprague–Dawley rats. Fluoxetine (2.5–10 mg/kg, i.p.), sertraline (15 mg/kg, i.p.) and m-CPP (0.5–2.0 mg/kg, i.p.) all had an anxiogenic-like profile (decrease in time of total social interaction and increase in self-grooming compared to vehicle) under low-light, familiar arena test conditions. All these effects were reversed by pretreatment with the highly subtype-selective 5-HT2C receptor antagonist, SB-242084 at doses of either 0.05 or 0.2 mg/kg, i.p. In contrast, the selective 5-HT1A receptor antagonist WAY-100635 (0.05 and 0.2 mg/kg, s.c.) failed to reverse SSRI-induced decrease in time of total social interaction, further, it augmented self-grooming response. SB-242084 (0.2 mg/kg) and WAY-100635 (0.05 and 0.2 mg/kg) reversed hypolocomotion caused by the SSRI antidepressants. SB-242084, tested alone against vehicle under high-light, unfamiliar arena test conditions associated with fear, caused significant anxiolysis at 0.2 mg/kg and higher doses. These results suggest that increased anxiety in rodents, and possibly, also in humans (e.g. agitation or jitteriness after SSRIs and panic after m-CPP), caused by acute administration of SSRI antidepressants or m-CPP, are mediated by activation of 5-HT2C receptors. Blockade of 5-HT1A autoreceptors may exacerbate certain acute adverse effects of SSRI antidepressants. Both 5-HT1A and 5-HT2C receptors are involved in the SSRI-induced decrease in locomotor activity. In addition, our studies confirm data that subtype-selective 5-HT2C receptor antagonists have strong anxiolytic actions.