Abstract
The application of an ASM1-based mathematical model for the modeling of autothermal thermophilic aerobic digestion is demonstrated. Based on former experimental results the original ASM1 was extended by the activation of facultative thermophiles from the feed sludge and a new component, the thermophilic biomass was introduced. The resulting model was calibrated in the temperature range of 20-60 degrees C. The temperature dependence of the growth and decay rates in the model is given in terms of the slightly modified Arrhenius and Topiwala-Sinclair equations. The capabilities of the calibrated model in realistic ATAD scenarios are demonstrated with a focus on autothermal properties of ATAD systems at different conditions.