Motion of a solid object through a pasty (thixotropic) fluid

Abstract
For materials assumed to be simple yield stress fluids the velocity of an object should continuously increase from zero as the applied force increases from the critical value for incipient motion. We carried out experiments of fall of a sphere in a typical, thixotropic, pasty material (a laponite suspension). We either left a sphere falling in the fluid in different initial states of structure or vibrated the fluid in a given state of structure at different frequencies. In each case three analogous regimes appear either for increasing restructuring states of the fluid or decreasing frequencies: A rapid fall at an almost constant rate; a slower fall at a progressively decreasing velocity; a slow fall at a rapidly decreasing rate finally leading to apparent stoppage. These results show that the motion of an object, due to gravity in a pasty material, is a more complex dynamical process than generally assumed for simple yield stress fluids. A simple model using the basic features of the (thixotropic) rheological behavior of these pasty materials makes it possible to explain these experimental trends. The fall of an object in such a fluid thus appears to basically follow a bifurcation process: For a sufficiently large force applied onto the object its rapid motion tends to sufficiently liquify the fluid around it so that its subsequent motion is more rapid and so on until reaching a constant velocity; on the contrary if the force applied onto the object is not sufficiently large the fluid around has enough time to restructure, which slows down the motion and so on until the complete stoppage of the object.

This publication has 24 references indexed in Scilit: