Abstract
This paper describes the phenomenon of retraction-induced spreading of embryonic chick heart fibroblasts moving in culture. Measurable criteria of cell spreading (increase in area of the spreading lamella, and total spread area of the cell) are found to change predictably with retraction of a portion of the cell margin. Ruffling activity was found to increase. The leading lamella of a spread fibroblast ordinarily advances slowly, with an average area increase of approximately 21 mu2m/min. A 10- to 30-fold increase in spreading occurs within 8 s after onset of retraction at the trailing edge and then decreases slightly so that by 1 min the increase in spreading is five to tenfold. During this period, there is a linear relationship between area increase at the leading edge and area decrease at the trailing edge. During the next 10--15 min, spreading gradually decreases to normal. Although the relationship between area spreading and area retracting of fibroblasts at different phases of movement is not significantly linear, it is highly correlated (Table II). These results suggest that the rate of fibroblast spreading may be inversely related to the degree of spreading of the cell as a whole.