Ultrahigh-speed point scanning two-photon microscopy using high dynamic range silicon photomultipliers

Abstract
Conventional two-photon microscopes use photomultiplier tubes, which enable high sensitivity but can detect relatively few photons per second, forcing longer pixel integration times and limiting maximum imaging rates. We introduce novel detection electronics using silicon photomultipliers that greatly extend dynamic range, enabling more than an order of magnitude increased photon detection rate as compared to state-of-the-art photomultiplier tubes. We demonstrate that this capability can dramatically improve both imaging rates and signal-to-noise ratio (SNR) in two-photon microscopy using human surgical specimens. Finally, to enable wider use of more advanced detection technology, we have formed the OpenSiPM project, which aims to provide open source detector designs for high-speed two-photon and confocal microscopy.
Funding Information
  • National Institutes of Health (K22-CA226035)