Impact of Different Morphological Characteristics of Residential Areas on Wind Movement: Case Study of Karşıyaka (Izmir)

Abstract
Cities are warmer than their surrounding rural areas due to the urban heat island effect. The heat island effect occurs in urbanized areas in which structures such as buildings and roads are highly concentrated and green cover is limited. Extreme heat waves resulting from climate change also cause temperature increases in the urban environment. In addition, the urban heat island effect negatively affects the comfort of individuals living in cities and increases the amount of energy required for cooling, especially in warm climate regions. To reduce both the urban heat island effect and the need for cooling, it is necessary to consider wind movement during the urban planning process. Within this context, it is vital that spatial development decisions allow planned building groups to benefit from natural ventilation opportunities. The morphological features of buildings directly affect the available opportunities to use wind energy for passive cooling in urban areas. Therefore, it is necessary to determine which morphological parameters affect the building-wind relationship. This study presents an analysis of wind simulations made by modeling selected examples of actual residential areas to determine the effects of different morphological features on wind movement. Twelve residential areas located in the Karşıyaka District of İzmir Province were determined for analysis due to their distinct morphological characteristics. The results of the study revealed that the parameters that affect wind movement in urban areas are the array of the buildings, their density, the distances between them, their floor area ratio, and their height. With regard to the provision of wind movement, it was found that the detached housing type is the most advantageous for hot climate zones. In addition, increasing the distances between structures was found to have a positive effect on natural ventilation. However, when viewed at the scale of residential areas, building heights on wind movements in the residential areas depends on the other two parameters. The simulations created for this study show that all morphological features of the building group under analysis affect wind movement, both separately and in combination.