Field programmable gate array compression for large array multispeckle diffuse correlation spectroscopy

Abstract
SignificanceDiffuse correlation spectroscopy (DCS) is an indispensable tool for quantifying cerebral blood flow noninvasively by measuring the autocorrelation function (ACF) of the diffused light. Recently, a multispeckle DCS approach was proposed to scale up the sensitivity with the number of independent speckle measurements, leveraging the rapid development of single-photon avalanche diode (SPAD) cameras. However, the extremely high data rate from advanced SPAD cameras is beyond the data transfer rate commonly available and requires specialized high-performance computation to calculate large number of autocorrelators (ACs) for real-time measurements.AimWe aim to demonstrate a data compression scheme in the readout field-programmable gate array (FPGA) of a large-pixel-count SPAD camera. On-FPGA, data compression should democratize SPAD cameras and streamline system integration for multispeckle DCS.ApproachWe present a 192 × 128 SPAD array with 128 linear ACs embedded on an FPGA to calculate 12,288 ACFs in real time.ResultsWe achieved a signal-to-noise ratio (SNR) gain of 110 over a single-pixel DCS system and more than threefold increase in SNR with respect to the state-of-the-art multispeckle DCS.ConclusionsThe FPGA-embedded autocorrelation algorithm offers a scalable data compression method to large SPAD array, which can improve the sensitivity and usability of multispeckle DCS instruments.