Linker Engineering toward Full-Color Emission of UiO-68 Type Metal–Organic Frameworks

Abstract
Luminescent metal–organic frameworks (LMOFs) demonstrate strong potential for a broad range of applications due to their tunable compositions and structures. However, the methodical control of the LMOF emission properties remains a great challenge. Herein, we show that linker engineering is a powerful method for systematically tuning the emission behavior of UiO-68 type metal–organic frameworks (MOFs) to achieve full-color emission, using 2,1,3-benzothiadiazole and its derivative-based dicarboxylic acids as luminescent linkers. To address the fluorescence self-quenching issue caused by densely packed linkers in some of the resultant UiO-68 type MOF structures, we apply a mixed-linker strategy by introducing nonfluorescent linkers to diminish the self-quenching effect. Steady-state and time-resolved photoluminescence (PL) experiments reveal that aggregation-caused quenching can indeed be effectively reduced as a result of decreasing the concentration of emissive linkers, thereby leading to significantly enhanced quantum yield and increased lifetime.
Funding Information
  • Science, Technology and Innovation Commission of Shenzhen Municipality (RCBS20200714114941230)
  • Guangdong Basic and Applied Basic Research Foundation (2020A1515110420)