Comparative assessment of multiple COVID-19 serological technologies supports continued evaluation of point-of-care lateral flow assays in hospital and community healthcare settings

Top Cited Papers
Open Access
Abstract
There is a clear requirement for an accurate SARS-CoV-2 antibody test, both as a complement to existing diagnostic capabilities and for determining community seroprevalence. We therefore evaluated the performance of a variety of antibody testing technologies and their potential use as diagnostic tools. Highly specific in-house ELISAs were developed for the detection of anti-spike (S), -receptor binding domain (RBD) and -nucleocapsid (N) antibodies and used for the cross-comparison of ten commercial serological assays—a chemiluminescence-based platform, two ELISAs and seven colloidal gold lateral flow immunoassays (LFIAs)—on an identical panel of 110 SARS-CoV-2-positive samples and 50 pre-pandemic negatives. There was a wide variation in the performance of the different platforms, with specificity ranging from 82% to 100%, and overall sensitivity from 60.9% to 87.3%. However, the head-to-head comparison of multiple sero-diagnostic assays on identical sample sets revealed that performance is highly dependent on the time of sampling, with sensitivities of over 95% seen in several tests when assessing samples from more than 20 days post onset of symptoms. Furthermore, these analyses identified clear outlying samples that were negative in all tests, but were later shown to be from individuals with mildest disease presentation. Rigorous comparison of antibody testing platforms will inform the deployment of point-of-care technologies in healthcare settings and their use in the monitoring of SARS-CoV-2 infections. PCR-based throat and nose swab tests for novel coronavirus (SARS-CoV-2) establish if someone is infected with the virus, while antibody tests can determine whether someone has had it in the past. However, for diagnosis later in disease, or in delayed-onset syndromes such as paediatric inflammatory multisystem syndrome (PIMS), antibody tests could form an important part of hospital diagnostic capabilities. They will also be essential for patient management strategies and community seroprevalence studies. We have conducted unbiased, head-to-head comparisons of ten commercial antibody test kits, using blood from patients admitted to hospital with COVID-19 throughout the peak of the epidemic in London, UK. As there was no existing approved diagnostic antibody test, we developed our own sensitive assay and used this to cross-compare the commercial tests. There was a broad range of performance among the tests, but all gave the best results when used 20 days or more after the start of symptoms. Furthermore, antibody levels were higher in individuals with severe illness compared to those with asymptomatic or mild disease. Some of the best-performing tests were rapid lateral flow immunoassays, which are affordable, quick and easy to use, and if they are deployed appropriately could have considerable utility in healthcare settings.