New Search

Export article
Open Access

Discrete-time inverse linear quadratic optimal control over finite time-horizon under noisy output measurements

Published: 15 November 2021

Abstract: In this paper, the problem of inverse quadratic optimal control over finite time-horizon for discrete-time linear systems is considered. Our goal is to recover the corresponding quadratic objective function using noisy observations. First, the identifiability of the model structure for the inverse optimal control problem is analyzed under relative degree assumption and we show the model structure is strictly globally identifiable. Next, we study the inverse optimal control problem whose initial state distribution and the observation noise distribution are unknown, yet the exact observations on the initial states are available. We formulate the problem as a risk minimization problem and approximate the problem using empirical average. It is further shown that the solution to the approximated problem is statistically consistent under the assumption of relative degrees. We then study the case where the exact observations on the initial states are not available, yet the observation noises are known to be white Gaussian distributed and the distribution of the initial state is also Gaussian (with unknown mean and covariance). EM-algorithm is used to estimate the parameters in the objective function. The effectiveness of our results are demonstrated by numerical examples.
Keywords: Inverse optimal control / Linear quadratic regulator / Statistical consistency / EM-algorithm

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

Share this article

Click here to see the statistics on "Control Theory and Technology" .
References (18)
    Back to Top Top