Compositional and phase dependence of elastic modulus of crystalline and amorphous Hf1-xZrxO2 thin films

Abstract
The elastic moduli of amorphous and crystalline atomic layer-deposited Hf1-xZrxO2 (HZO, x =0, 0.31, 0.46, 0.79, 1) films prepared with TaN electrodes on silicon substrates were investigated using picosecond acoustic measurements. The moduli of the amorphous films were observed to increase between 211 ± 6 GPa for pure HfO2 and 302 ± 9 GPa for pure ZrO2. In the crystalline films, it was found that the moduli increased upon increasing the zirconium composition from 248 ± 6 GPa for monoclinic HfO2 to 267 ± 9 GPa for tetragonal ZrO2. Positive deviations from this increase were observed for the Hf0.69Zr0.31O2 and Hf0.54Zr0.46O2 compositions, which were measured to have moduli of 264 ± 8 GPa and 274 ± 8 GPa, respectively. These two compositions contained the largest fractions of the ferroelectric orthorhombic phase, as assessed from polarization and diffraction data. The biaxial stress states of the crystalline films were characterized through sin2( ψ ) x-ray diffraction analysis. The in-plane stresses were all found to be tensile and observed to increase with the increasing zirconium composition, between 2.54 ± 0.6 GPa for pure HfO2 and 5.22 ± 0.5 GPa for pure ZrO2. The stresses are consistent with large thermal expansion mismatches between the HZO films and silicon substrates. These results demonstrate a device-scale means to quantify biaxial stress for investigation on its effect on the ferroelectric properties of hafnia-based materials.