Applying Machine Strength Grading System to Round Timber Used in Hydraulic Engineering Works

Abstract
Round timber is often used for hydraulic engineering works, but the strength grading of round logs is not as well developed as that of sawn timber. The advantages of using defined strength classes, as well as the proper selection of the raw material, could be applicable to hydraulic works as well. In this study, the methods and rules developed for sawn timber were applied to the mechanical selection of oak round logs, paying particular attention to the issue of the simplicity of grading operations and the moisture content of the timber. Both the acoustic velocity and dynamic modulus of elasticity of oak logs were measured with different instruments before performing destructive bending tests; machine settings were derived for both properties and dry and wet grading operations were simulated to compare efficiency. The use of the dynamic modulus of elasticity makes machine grading more efficient. On the other hand, the use of acoustic velocity alone is feasible and makes the procedure much faster, even if wet grading resulted in very conservative estimations. The yields obtained were similar for lower grades, but to achieve higher strength classes, the dynamic modulus was preferable. For very fast and less expensive measurements, velocity could be considered an appropriate method, as an improvement over the use of unselected material.