Abstract
Cervical cancer (CC) is a gynecological malignant tumor. Circular RNA (hsa_circ_0001772) (circRBM33) is implicated in the tumorigenesis of cancers. Nevertheless, the role of circRBM33 in CC is indistinct. Quantitative real-time polymerase chain reaction (qRT-PCR) was employed to evaluate the levels of circRBM33, miR-758-3p, and pumilio RNA binding family member 2 (PUM2) mRNA in tissue samples and cells. Cell proliferation, apoptosis, migration, invasion, and glycolysis were assessed using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, flow cytometry assay, transwell assay, or special commercial kits. Relative protein levels were examined via western blotting. The targeting relationship between circRBM33 or PUM2 and miR-758-3p was verified via dual-luciferase reporter or RNA pull-down assays. The role of circRBM33 was confirmed via tumor formation experiments. CircRPPH1 and PUM2 were upregulated while miR-758-3p was downregulated in CC tissues and cells. Functionally, circRBM33 knockdown constrained tumor growth in vivo and cured CC cell proliferation, migration, invasion, glycolysis, and fostered CC cell apoptosis in in vitro. Mechanistically, circRBM33 sponged miR-758-3p to modulate PUM2 expression. MiR-758-3p inhibitor neutralized circRBM33 silencing-mediated effects on the malignant behaviors of CC cells. PUM2 elevation overturned the suppressive influence of miR-758-3p upregulation on the malignant behaviors of CC cells. CircRBM33 fostered CC advancement via absorbing miR-758-3p and upregulating PUM2, indicating that circRBM33 was a possible target for CC treatment.
Funding Information
  • the Social and Development Project of Changzhou (no. CE20175004)