Structural basis of DNA synthesis opposite 8-oxoguanine by human PrimPol primase-polymerase

Abstract
PrimPol is a human DNA polymerase-primase that localizes to mitochondria and nucleus and bypasses the major oxidative lesion 7,8-dihydro-8-oxoguanine (oxoG) via translesion synthesis, in mostly error-free manner. We present structures of PrimPol insertion complexes with a DNA template-primer and correct dCTP or erroneous dATP opposite the lesion, as well as extension complexes with C or A as a 3-terminal primer base. We show that during the insertion of C and extension from it, the active site is unperturbed, reflecting the readiness of PrimPol to accommodate oxoG(anti). The misinsertion of A opposite oxoG(syn) also does not alter the active site, and is likely less favorable due to lower thermodynamic stability of the oxoG(syn)center dot A base-pair. During the extension step, oxoG(syn) induces an opening of its base-pair with A or misalignment of the 3 ' -A primer terminus. Together, the structures show how PrimPol accurately synthesizes DNA opposite oxidatively damaged DNA in human cells. The human DNA primase and DNA polymerase PrimPol replicates through the major oxidative DNA damage lesion 7,8-dihydro-8-oxoguanine (oxoG) via translesion synthesis in a mostly error-free manner thus suppressing oxoG-induced mutagenesis in mitochondria and the nucleus. Here, the authors present crystal structures of PrimPol in complex with an oxoG lesion in different contexts that provide mechanistic insights into how PrimPol performs predominantly accurate synthesis on oxidative-damaged DNAs in human cells.
Funding Information
  • U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (R35-GM131780)