Novel Minimal Radiation Approach for Percutaneous Pulmonary Valve Implantation

Abstract
The aim of the study is to evaluate the impact of multimodality imaging technology during percutaneous pulmonary valve implantation (PPVI). Among percutaneous procedures, PPVI traditionally has one of the highest patient radiation exposures. Different protocol modifications have been implemented to address this problem (i.e., improvements in guidance systems, delivery systems, valve design, post-implantation evaluation). Although the effectiveness of individual modifications has been proven, the effect of an approach which combines these changes has not been reported. We performed a retrospective chart review of 76 patients who underwent PPVI between January 2018 and December 2019. Patients were classified in “Traditional protocol,” using routine biplane angiography and/or 3D rotational angiography (3DRA); and “Multimodality protocol” that included the use of VesselNavigator for guidance, selective 3DRA for coronary evaluation, Long DrySeal Sheath for valve delivery, and Intracardiac Echocardiography for valve evaluation after implantation. Radiation metrics, procedural time, and clinical outcomes were compared between groups. When the traditional protocol group was compared with the multimodality protocol group, a significant reduction was described for total fluoroscopy time (31.6 min vs. 26.2 min), dose of contrast per kilogram (1.8 mL/Kg vs. 0.9 mL/Kg), DAP/kg (26.6 µGy·m2/kg vs. 19.9 µGy·m2/kg), and Air Kerma (194 mGy vs. 99.9 mGy). A reduction for procedure time was noted (140 min vs. 116.5 min), but this was not statistically significant. There was no difference in clinical outcomes or the presence of complications between groups. The combination of novel technology in PPVI caused a significant reduction in radiation metrics without increasing the complication rate in our population.

This publication has 19 references indexed in Scilit: