Quantum computer based on color centers in diamond

Abstract
Artificial atoms like the nitrogen vacancy (NV) centers in diamond enable the realization of fully functional qubits in a solid at room temperature. The functionalities of all the parts needed to create a quantum computer, such as quantum error correction, couplings, quantum teleportation, and a quantum repeater, have already been experimentally demonstrated. These achievements are expected to influence the industrial development of quantum information technology as well as quantum sensing. Whereas quantum sensing has been established and a large number of organizations are working on new developments in this area, a quantum computer itself remains elusive due to technical reasons and limitations of the available materials. For example, only in recent months has it become possible to electrically readout the NV spin state at the level of a single center and significantly improve the scalability of NV center production. A number of ideas have been proposed to overcome the above-mentioned limitations. This paper summarizes the status of research in the area, details the most promising concepts for development, and discusses factors limiting progress as well as the most recent developments in the field.
Funding Information
  • Deutsche Forschungsgemeinschaft
  • Bundesministerium für Bildung und Forschung
  • European Commission (820394)