Insulin Resistance Is Associated With Enhanced Brain Glucose Uptake During Euglycemic Hyperinsulinemia: A Large-Scale PET Cohort

Abstract
OBJECTIVE Whereas insulin resistance is expressed as reduced glucose uptake in peripheral tissues, the relationship between insulin resistance and brain glucose metabolism remains controversial. Our aim was to examine the association of insulin resistance and brain glucose uptake (BGU) during a euglycemic hyperinsulinemic clamp in a large sample of study participants across a wide range of age and insulin sensitivity. RESEARCH DESIGN AND METHODS [18F]-fluorodeoxyglucose positron emission tomography (PET) data from 194 participants scanned under clamp conditions were compiled from a single-center cohort. BGU was quantified by the fractional uptake rate. We examined the association of age, sex, M value from the clamp, steady-state insulin and free fatty acid levels, C-reactive protein levels, HbA1c, and presence of type 2 diabetes with BGU using Bayesian hierarchical modeling. RESULTS Insulin sensitivity, indexed by the M value, was associated negatively with BGU in all brain regions, confirming that in insulin-resistant participants BGU was enhanced during euglycemic hyperinsulinemia. In addition, the presence of type 2 diabetes was associated with additional increase in BGU. On the contrary, age was negatively related to BGU. Steady-state insulin levels, C-reactive protein and free fatty acid levels, sex, and HbA1c were not associated with BGU. CONCLUSIONS In this large cohort of participants of either sex across a wide range of age and insulin sensitivity, insulin sensitivity was the best predictor of BGU.