Tet2-mediated epigenetic drive for astrocyte differentiation from embryonic neural stem cells

Abstract
DNA methylation and demethylation at CpG di-nucleotide sites plays important roles in cell fate specification of neural stem cells (NSCs). We have previously reported that DNA methyltransferases, Dnmt1and Dnmt3a, serve to suppress precocious astrocyte differentiation from NSCs via methylation of astroglial lineage genes. However, whether active DNA demethylase also participates in astrogliogenesis remains undetermined. In this study, we discovered that a Ten-eleven translocation (Tet) protein, Tet2, which was critically involved in active DNA demethylation through oxidation of 5-Methylcytosine (5mC), drove astrocyte differentiation from NSCs by demethylation of astroglial lineage genes including Gfap. Moreover, we found that an NSC-specific bHLH transcription factor Olig2 was an upstream inhibitor for Tet2 expression through direct association with the Tet2 promoter, and indirectly inhibited astrocyte differentiation. Our research not only revealed a brand-new function of Tet2 to promote NSC differentiation into astrocytes, but also a novel mechanism for Olig2 to inhibit astrocyte formation.