Fusobacterium nucleatum Secretes Outer Membrane Vesicles and Promotes Intestinal Inflammation

Top Cited Papers
Open Access
Abstract
Multiple studies have implicated microbes in the development of inflammation, but the mechanisms remain unknown. Bacteria in the genus Fusobacterium have been identified in the intestinal mucosa of patients with digestive diseases; thus, we hypothesized that Fusobacterium nucleatum promotes intestinal inflammation. The addition of >50 kDa F. nucleatum conditioned media, which contain outer membrane vesicles (OMVs), to colonic epithelial cells stimulated secretion of the proinflammatory cytokines interleukin-8 (IL-8) and tumor necrosis factor (TNF). In addition, purified F. nucleatum OMVs, but not compounds 50-kDa compounds also stimulated TNF secretion, p-ERK, p-CREB, and NF-κB activation in human colonoid monolayers. In mice harboring a human microbiota, pretreatment with antibiotics and a single oral gavage of F. nucleatum resulted in inflammation. Compared to mice receiving vehicle control, mice treated with F. nucleatum showed disruption of the colonic architecture, with increased immune cell infiltration and depleted mucus layers. Analysis of mucosal gene expression revealed increased levels of proinflammatory cytokines (KC, TNF, IL-6, IFN-γ, and MCP-1) at day 3 and day 5 in F. nucleatum-treated mice compared to controls. These proinflammatory effects were absent in mice who received F. nucleatum without pretreatment with antibiotics, suggesting that an intact microbiome is protective against F. nucleatum-mediated immune responses. These data provide evidence that F. nucleatum promotes proinflammatory signaling cascades in the context of a depleted intestinal microbiome. IMPORTANCE Several studies have identified an increased abundance of Fusobacterium in the intestinal tracts of patients with colon cancer, liver cirrhosis, primary sclerosing cholangitis, gastroesophageal reflux disease, HIV infection, and alcoholism. However, the direct mechanism(s) of action of Fusobacterium on pathophysiological within the gastrointestinal tract is unclear. These studies have identified that F. nucleatum subsp. polymorphum releases outer membrane vesicles which activate TLR4 and NF-κB to stimulate proinflammatory signals in vitro. Using mice harboring a human microbiome, we demonstrate that F. nucleatum can promote inflammation, an effect which required antibiotic-mediated alterations in the gut microbiome. Collectively, these results suggest a mechanism by which F. nucleatum may contribute to intestinal inflammation.
Funding Information
  • HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (T32DK007664-28)
  • HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (F30DK112563)
  • HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (K01DK121869)
  • HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (K01DK123195)
  • HHS | NIH | National Institute of Allergy and Infectious Diseases (F32AI136404)
  • HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (R01DK115507-02)
  • HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (R01DK103759)
  • HHS | NIH | National Institute of Allergy and Infectious Diseases (R01AI123278)
  • HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (P30DK056338-18)

This publication has 116 references indexed in Scilit: