Overcoming roadblocks in computational roadmaps to the future for safe nanotechnology

Abstract
The rapid rise of nanotechnology has resulted in a parallel rise in the number of products containing nanomaterials. The unusual properties that nano forms of materials exhibit relative to the bulk has driven intense research interest and relatively rapid adoption by industry. Regulatory agencies are charged with protecting workers, the public, and the environment from any adverse effects of nanomaterials that may also arise because of these novel physical and chemical properties. They need data and models that allow them to flag nanomaterials that may be of concern, while balancing potential stifling of commercial innovation. Roadmaps for the future of safe nanotechnology were defined more than a decade ago, but many roadblocks identified in these studies remain. Here, we discuss the roadblocks that are still hindering the effective application of informatics and predictive computational nanotoxicology methods from providing more effective guidance to nanomaterials regulatory agencies and safe-by-design rationale for industry. We describe how developments in high throughput synthesis, characterization, and biological assessment of nanomaterials will overcome many of these roadblocks, allowing a clearly defined roadmap for computational design of effective but safe-by-design nanomaterials to be realized.