In Vitro Analysis of Quality of Dental Adhesive Bond Systems Applied in Various Conditions

Abstract
Introduction: There are several methods of reducing a microleakage, and one of them is choosing appropriate adhesive material. The aim of the work was the in vitro analysis of 4 bonds: 3M ESPE “Single bond”, Dentsply “Prime and Bond Active”, Coltene “One Coat 7 Universal”, and Kuraray “Clearfil Universal Bond Quick”. Material and methods: 136 healthy molar teeth were collected and randomly split into 4 groups and Vth Class cavities were prepared. Chosen adhesives were used in four groups of teeth with the same composite. Teeth were the thermocycled, sealed, covered with lacquer, and submerged in 1% methylene blue solution for 24 h. After the thermocycling, the vertices of each tooth were sealed using dental wax. Each tooth was then fully covered with lacquer. All teeth were then submerged into 1% methylene blue solution for 24 h in room temperature. In the next step they were transversely cut through a center of restoration. The Olympus BX43 microscope was used to photograph each cut tooth. With the usage of Olympus stream software, measurement of the dye’s leakage was performed. Results. The statistical analysis proved that the most effective material when applied to ideally prepared cavity surface was Dentsply “Prime and Bond Active”. The second material was 3M ESPE “Single Bond”, third—Coltene “One Coat 7 Universal” and fourth—Kuraray “Clearfil Universal Bond Quick”. The most effective material applied to a too-dry surface was Dentsply “Prime and Bond Active”, second—3M ESPE “Single Bond”, third—Coltene “One Coat 7 Universal” and fourth—Kuraray “Clearfil Universal Bond Quick”. When it comes to too damp surfaces the best results were obtained with Dentsply “Prime and Bond Active” then Coltene “One Coat 7 Universal”, 3M ESPE “Single Bond” and Kuraray “Clearfil Universal Bond Quick”. Conclusion: The level of cavity dampness influences the quality of adhesives. Better results are obtained with over-dried surfaces than over-damp, which is connected with the dilution of the material.