A multimodal approach for the ecological investigation of sustained attention: A pilot study

Abstract
Natural fluctuations in sustained attention can lead to attentional failures in everyday tasks and even dangerous incidences. These fluctuations depend on personal factors, as well as task characteristics. So far, our understanding of sustained attention is partly due to the common usage of laboratory setups and tasks, and the complex interplay between behavior and brain activity. The focus of the current study was thus to test the feasibility of applying a single-channel wireless EEG to monitor patterns of sustained attention during a set of ecological tasks. An EEG marker of attention (BEI - Brain Engagement Index) was continuously recorded from 42 healthy volunteers during auditory and visual tasks from the Test of Everyday Attention (TEA) and Trail Making Test (TMT). We found a descending pattern of both performance and BEI in the auditory tasks as task complexity increases, while the increase in performance and decrease in BEI on the visual task. In addition, patterns of BEI in the complex tasks were used to detect outliers and the optimal range of attention through exploratory models. The current study supports the feasibility of combined electrophysiological and neurocognitive investigation of sustained attention in ecological tasks yielding unique insights on patterns of sustained attention as a function of task modality and task complexity.