Annals of Civil and Environmental Engineering

Journal Information
EISSN: 25740350
Total articles ≅ 47

Latest articles in this journal

S Gopikumar, S Sundararajan, J Allwyn Kingsly Gladston, C Antony Vasantha Kumar, K Hari Babu, K Jeyakumar
Annals of Civil and Environmental Engineering, Volume 7, pp 001-003;

The main focus of this study concentrates on evaluating the quality of groundwater in and around the zone of pattamadai where the production of the mat in this region is a landmark industry, which is using dyes in a larger volume. The primary work starts with the collection of water samples from 13 boreholes and 13 hand-dug wells in different time intervals in the month of March 2021, which is a dry season. As per standards the water quality parameters have been evaluated and observed to be within the range. All the physico-chemical parameters for the samples have been studied for boreholes and hand-dug wells as all the values are observed to be within the range and are highlighted in the results.
Abul-Soud Mohamed
Annals of Civil and Environmental Engineering, Volume 6, pp 074-076;

Thousands of tons of biodegradable organic waste generates in urban and rural areas every day, creating disposal problems. Urban organic waste can be converted into valuable output products (vermicompost, vermin-liquid, and earthworms) by applying a vermicomposting technique that had different. Implementing green roofs via soilless culture systems as micro-scale farms led to increasing natural resource use efficiencies as well as producing fresh food. The integration of both techniques will create not just reduce pollution and climate change impacts but also for increasing food production and security in urban, enhance the lifestyle and increase public awareness of environmental issues. This process is profitable at any scale of operation.
Abul-Soud Mohamed
Annals of Civil and Environmental Engineering, Volume 6, pp 071-073;

Smart agriculture applications (monitoring, sensing, automation and control) of micro-climate and environmental conditions for different agriculture production sectors and scales, decision-makers and researchers need to take it into consideration to strengthen the efforts of mitigation and adaption of climate change impacts as well as maximize the natural resources use efficiencies and food production. Motivate the farmers to implement smart agriculture applications, especially in developed and poor countries, strong cooperation for technology transfer and build up the technology infrastructure of information and communication (ICT) plus the internet of things (IoT).
Annals of Civil and Environmental Engineering, Volume 6, pp 066-070;

The study aimed to examine the chemical composition of Acacia melanoxylon wood as a potential raw material for pulp and paper manufacturing. Samples of Acacia melanoxylon were taken systematically based on tree height at the bottom (10%), middle (50%), and top (90%) of market height. The sample was sorted, dried, milled, and sieved, and all chemical compositions were determined by the standards outlined in ASTM except cellulose and hemicellulose, which were determined by the Kurschner-Hoffer and alkali extraction methods, respectively. The results of the study showed that the overall average values of chemical composition along tree height levels were 45.02%, 21.94%, 23.79%, 5.52%, 3.24% and 0.48% for cellulose, hemicellulose, Klason lignin, hot-water solubility, alcohol-benzene extracts, and ash content, respectively. Except for hot-water extractives, the chemical composition of the bottom and top portions differed significantly. Generally, this study suggests that the chemical composition of Acacia melanoxylon wood is well suited for pulp and paper production.
Abara Lamesa, Bekele Tsegaye
Annals of Civil and Environmental Engineering, Volume 6, pp 053-061;

The fiber characteristics and basic density of Acacia melanoxylon were investigated for its potential as a raw material for pulp and paper production. Six trees from the even-aged stand and similar diameter class were selected randomly from the Chencha district of Ethiopia. Wood disks were systematically cross-cut from a log along tree height levels, at the bottom (10%), middle (50%) and top (90%) of the merchantable height and blocks of wood (2 cm x 2 cm x 2 cm) were taken from pith to periphery at near pith (10%), middle (50%) and near bark (90%) of disk radius. Fiber maceration and basic density were determined, by 50% nitric acid solution and water displacement method respectively. All the data were analyzed using a two-way analysis of variance at α = 0.05. The fiber characteristics of the selected trees; the fiber length, fiber diameter, lumen diameter and cell wall thickness were measured while the-slenderness ratio, Runkel ratio, flexibility coefficient and wall coverage ratio of the fibers were derived from the measured fiber dimensions. The result showed that- the overall mean were, 1.04 mm, 21.60 µm, 15.36 µm, 3.75 µm, 0.48, 48.05%, 71.10%, 0.34 and 0.56 g/ml, for fiber length, fiber width, lumen diameter, cell wall thickness, Runkle ratio, slenderness ratio, flexibility ratio, wall coverage ratio and basic density, respectively. Generally, Acacia melanoxylon wood is suitable for pulp-and-paper-production, to due-to-its adequate-fiber dimension, derived fiber value and basic density. Therefore, attention should be given to tree growers, government and non-governmental organizations on the plantation expansion of Acacia melanoxylon.
Cezar Bulacu
Annals of Civil and Environmental Engineering, Volume 6, pp 050-052;

The depletion of non-renewable resources is followed by severe ecological and social impacts, and the heavy usage of raw, virgin resources leaves significant, long-lasting footprints. The transition to a more circular economy, where the value of products, materials and resources is maintained and circulated (by recycling activities) in the economy for as long as possible, is an essential contribution to the EU’s efforts to develop a sustainable, low carbon, resource efficient and competitive economy. In this context, ecological solutions consisting of materials that help carbon sequestration and necessitate small amounts of energy for production are becoming increasingly popular from a building construction point of view, namely: The raw material is cheap and in large quantities; has low thermal conductivity; are from a renewable source. The paper presents an analysis of IZOMIN an innovative thermal insulating product made from renewable or recycled resources and their main technical properties, the purpose being to inform the market in order to increase the present level of technical knowledge and technologies used to facilitate the implementation of buildings with high energy efficiency.
Bansal Deepak, Kamat Murlidhar, Ralegaonkar Rahul, Bansal Yashika
Annals of Civil and Environmental Engineering, Volume 6, pp 042-049;

Buildings are demolished, when they outlived their service life, become structurally/functionally unfit, or have been built illegally. In India, an RCC framed, 40-storied high-rise building, with a built-up area of about 75,000 sqm, built without relevant approvals along with lots of violations of building bye-laws, has been demolished. There is nothing new in this demolition process, but its effect on the environment is unavailable. A study has been conducted to understand the environmental impact of this demolition. Based on the main primary construction materials, the embodied energy of this demolished building has been computed as 7.07 GJ/sqm. The civil construction cost of the building was found to be about INR 200 Crores (USD 27 million, assuming a conversion rate of 1 USD 75 INR in the year 2022). Expected GHGs emissions corresponding to this embodied energy were estimated as 42.42 × 103 MT. Energy in the demolition of the building has been computed to be about 8.7 GJ/sqm. The situation, in which this building can be retrofitted and made compliant with local building bye-laws, has been analyzed for its environmental impact.
Rashiddel Alireza, Dias Daniel
Annals of Civil and Environmental Engineering, Volume 6, pp 040-041;

Different methods for calculating and estimating a safe face pressure were proposed by researchers, which have some advantages and disadvantages. In each of these methods, some related parameters such as soil geotechnical parameters, dimensions of the tunnel, and geological conditions are used. In these methods, using a series of mathematical or empirical functions, the face pressure is calculated. In this study, the face displacements were obtained using the finite difference numerical FLAC3D, the COB (Netherlands Underground Science Center) empirical, and the Leca and Dormieux (1990) analytical methods. The impact of the COB method on different ground stiffnesses is studied and evaluated. The reference case of this research is the Tehran Metro Line 6 tunnel (excavation radius: 4.6 m).
Back to Top Top