Emerging Topics in Life Sciences

Journal Information
ISSN / EISSN: 23978554 / 23978562
Published by: Portland Press Ltd.
Total articles ≅ 423

Latest articles in this journal

Published: 24 January 2023
Emerging Topics in Life Sciences; https://doi.org/10.1042/etls20220086

Abstract:
Our knowledge on the asymmetric distribution of sphingomyelin (SM) in the plasma membrane is largely based on the biochemical analysis of erythrocytes using sphingomyelinase (SMase). However, recent studies showed that the product of SMase, ceramide, disturbs transmembrane lipid distribution. This led to the development of the complimentary histochemical method, which combines electron microscopy and SM-binding proteins. This review discusses the advantages and caveats of published methods of measuring transbilayer distribution of SM. Recent finding of the proteins involved in the transbilayer movement of SM will also be summarized.
Victoria Thusgaard Ruhoff, ,
Published: 16 January 2023
Emerging Topics in Life Sciences; https://doi.org/10.1042/etls20220078

Abstract:
Biomembranes are fundamental to our understanding of the cell, the basic building block of all life. An intriguing aspect of membranes is their ability to assume a variety of shapes, which is crucial for cell function. Here, we review various membrane shaping mechanisms with special focus on the current understanding of how local curvature and local rigidity induced by membrane proteins leads to emerging forces and consequently large-scale membrane deformations. We also argue that describing the interaction of rigid proteins with membranes purely in terms of local membrane curvature is incomplete and that changes in the membrane rigidity moduli must also be considered.
Published: 6 January 2023
Emerging Topics in Life Sciences; https://doi.org/10.1042/etls20220090

Abstract:
The development of electron cryomicroscopy (cryo-EM) has evolved immensely in the last several decades and is now well-established in the analysis of protein structure both in isolation and in their cellular context. This review focuses on the history and application of cryo-EM to the analysis of membrane architecture. Parallels between the levels of organization of protein structure are useful in organizing the discussion of the unique parameters that influence membrane structure and function. Importantly, the timescales of lipid motion in bilayers with respect to the timescales of sample vitrification is discussed and reveals what types of membrane structure can be reliably extracted in cryo-EM images of vitrified samples. Appreciating these limitations, a review of the application of cryo-EM to examine the lateral organization of ordered and disordered domains in reconstituted and biologically derived membranes is provided. Finally, a brief outlook for further development and application of cryo-EM to the analysis of membrane architecture is provided.
Published: 23 December 2022
Emerging Topics in Life Sciences; https://doi.org/10.1042/etls20220029

Abstract:
In mammalian cells, phospholipids are asymmetrically distributed between the outer and inner leaflets of the plasma membrane. The maintenance of asymmetric phospholipid distribution has been demonstrated to be required for a wide range of cellular functions including cell division, cell migration, and signal transduction. However, we recently reported that asymmetric phospholipid distribution is disrupted in Drosophila cell membranes, and this unique phospholipid distribution leads to the formation of highly deformable cell membranes. In addition, it has become clear that asymmetry in the trans-bilayer distribution of phospholipids is disturbed even in living mammalian cells under certain circumstances. In this article, we introduce our recent studies while focusing on the trans-bilayer distribution of phospholipids, and discuss the cellular functions of (a)symmetric biological membranes.
Richard Villagrana, Rosa Laura López-Marqués
Published: 23 December 2022
Emerging Topics in Life Sciences; https://doi.org/10.1042/etls20220083

Abstract:
Many biological membranes present an asymmetric lipid distribution between the two leaflets that is known as the transbilayer lipid asymmetry. This asymmetry is essential for cell survival and its loss is related to apoptosis. In mammalian and yeast cells, ATP-dependent transport of lipids to the cytosolic side of the biological membranes, carried out by so-called lipid flippases, contributes to the transbilayer lipid asymmetry. Most of these lipid flippases belong to the P4-ATPase protein family, which is also present in plants. In this review, we summarize the relatively scarce literature concerning the presence of transbilayer lipid asymmetry in different plant cell membranes and revise the potential role of lipid flippases of the P4-ATPase family in generation and/or maintenance of this asymmetry.
Published: 21 December 2022
Emerging Topics in Life Sciences, Volume 6, pp 555-556; https://doi.org/10.1042/etls20220110

Abstract:
This special issue of Emerging Topics in Life Sciences presents a selection of reviews that give insight into the vast array of research taking place in the fields of soft matter and biophysics, and where these two intersect. The reviews here cover the full range from the fundamentals of how biological systems may have assembled to how we can use this insight to develop and exploit new biomaterials for the future, all informed through the lens of the physical sciences. This issue has been both written and edited by early career researchers, highlighting the cutting-edge contributions that this generation of researchers is bringing to the field.
, Margarita Staykova
Published: 21 December 2022
Emerging Topics in Life Sciences, Volume 6, pp 583-592; https://doi.org/10.1042/etls20220052

Abstract:
The interaction between the actin cytoskeleton and the plasma membrane in eukaryotic cells is integral to a large number of functions such as shape change, mechanical reinforcement and contraction. These phenomena are driven by the architectural regulation of a thin actin network, directly beneath the membrane through interactions with a variety of binding proteins, membrane anchoring proteins and molecular motors. An increasingly common approach to understanding the mechanisms that drive these processes is to build model systems from reconstituted lipids, actin filaments and associated actin-binding proteins. Here we review recent progress in this field, with a particular emphasis on how the actin cytoskeleton provides mechanical reinforcement, drives shape change and induces contraction. Finally, we discuss potential future developments in the field, which would allow the extension of these techniques to more complex cellular processes.
Published: 19 December 2022
Emerging Topics in Life Sciences, Volume 6, pp 609-617; https://doi.org/10.1042/etls20220055

Abstract:
Asymmetric unilamellar vesicles are aqueous bodies surrounded by two dissimilar leaflets made from lipids, polymers, or both. They are great models for cell membranes and attractive vehicles in potential biomedicine applications. Despite their promise, asymmetric unilamellar vesicles are not widely studied or adopted in applications. This is largely due to the complexity in generating asymmetric membranes. Recent technical advances in microfluidics have opened doors to high throughput fabrication of asymmetric unilamellar vesicles. In this review, we focus on microfluidic methods for generating asymmetric lipid vesicles, with two dissimilar lipid leaflets, and asymmetric lipid–polymer vesicles, with one lipid leaflet and one polymer leaflet. We also review a few standard non-microfluidic methods for generating asymmetric vesicles. We hope to highlight the improved capability in obtaining asymmetric vesicles through a variety of methods and encourage the wider scientific community to adopt some of these for their own work.
Published: 9 December 2022
Emerging Topics in Life Sciences, Volume 6, pp 441-443; https://doi.org/10.1042/etls20220094

Abstract:
Mental health disorders affect a substantial proportion of the worldwide population, and currently available treatments do not work for all affected individuals. Understanding the psychological and biological mechanisms that underlie mental health disorders will facilitate treatment development, and the use of translational animal models is potentially transformative for this. Structured around the US National Institute of Mental Health's ‘Research Domain Criteria’ (RDoC) approach, this special issue showcases reviews that consider how animal models can best be used to understand and treat the processes that go awry in mental health disorders.
, Rochele Castelo-Branco
Published: 7 December 2022
Emerging Topics in Life Sciences, Volume 6, pp 541-554; https://doi.org/10.1042/etls20220010

Abstract:
Models of episodic memory are successfully established using spontaneous object recognition tasks in rodents. In this review, we present behavioral techniques devised to investigate this type of memory, emphasizing methods based on associations of places and temporal order of items explored by rats and mice. We also provide a review on the areas and circuitry of the medial temporal lobe underlying episodic-like memory, considering that a large number of neurobiology data derived from these protocols. Although spontaneous recognition tasks are commonplace in this field, there is need for careful evaluation of factors affecting animal performance. Such as the ongoing development of tools for investigating the neural basis of memory, efforts should be put in the refinement of experimental designs, in order to provide reliable behavioral evidence of this complex mnemonic system.
Back to Top Top