Journal of Intelligent System and Computation
Journal Information
ISSN / EISSN: 26219220 / 27221962
Total articles ≅ 47
Latest articles in this journal
Journal of Intelligent System and Computation, Volume 4, pp 16-21; https://doi.org/10.52985/insyst.v4i1.191
The publisher has not yet granted permission to display this abstract.
Journal of Intelligent System and Computation, Volume 4, pp 32-44; https://doi.org/10.52985/insyst.v4i1.208
The publisher has not yet granted permission to display this abstract.
Journal of Intelligent System and Computation, Volume 4, pp 22-31; https://doi.org/10.52985/insyst.v4i1.211
The publisher has not yet granted permission to display this abstract.
Journal of Intelligent System and Computation, Volume 4, pp 01-06; https://doi.org/10.52985/insyst.v4i1.215
The publisher has not yet granted permission to display this abstract.
Journal of Intelligent System and Computation, Volume 4, pp 07-15; https://doi.org/10.52985/insyst.v4i1.222
The publisher has not yet granted permission to display this abstract.
Published: 1 October 2021
Journal of Intelligent System and Computation, Volume 3, pp 61-72; https://doi.org/10.52985/insyst.v3i2.194
Abstract:
Sebagai pelaku bisnis, kartu nama adalah salah satu hal yang penting untuk bertukar informasi. Namun kartu nama biasanya mudah hilang atau rusak, sehingga beberapa orang biasanya menyimpan informasi dari kartu nama itu pada telepon genggam atau komputer mereka. Penelitian ini akan membuat sistem manajemen kartu nama baik individu dan juga perusahaan dengan ekstraksi informasi kartu nama otomatis untuk mempermudah pengguna perorangan ataupun perusahaan dalam melakukan penyimpanan kartu nama para kolega. Untuk mewujudkan aplikasi yang dilengkapi dengan fitur tersebut dilakukan proses pengenalan karakter pada gambar kartu nama menggunakan Tesseract OCR dan information extraction memanfaatkan klasifikasi entity dengan membangun classifier menggunakan Naive Bayes dan mengkombinasikannya dengan rule based. Hasil uji coba yang telah dilakukan mendapatkan performa 85.1% untuk pengenalan karakter dan 86% untuk pengklasifikasian entity. Dilakukan juga uji coba fungsionalitas terhadap setiap fitur pada sistem ini dengan menggunakan metode blackbox testing yang memastikan setiap aksi yang dilakukan pengguna akan menghasilkan output sesuai target yang diharapkan. Selain itu, dari hasil kuisioner yang berisikan tentang usability dari sistem ini, sebagian besar responden merasa terbantu dalam memanajemen kartu nama dengan menggunakan sistem aplikasi ini.
Published: 1 October 2021
Journal of Intelligent System and Computation, Volume 3, pp 85-92; https://doi.org/10.52985/insyst.v3i2.195
Abstract:
Berkembangnya teknologi Javascript khususnya AJAX dan CSS membuat halaman web yang dulunya statis menjadi lebih dinamis dengan tampilan yang lebih menarik dan dipenuhi iklan dan rekomendasi artikel lain. Oleh karena itu, sulit untuk mengotomatisasi proses pengambilan konten artikel pada konteks ini. Penelitian ini dibuat untuk menyelesaikan masalah otomatisasi pengambilan konten artikel di Internet. Aplikasi web yang akan dibuat terbagi menjadi empat modul, yaitu web crawler, web extractor, content classifier dan web visualizer. Penelitian ini memiliki dua desain arsitektur. Arsitektur yang pertama adalah arsitektur saat training. Arsitektur yang kedua adalah arsitektur program jadi. Proses training menggunakan 200 URL halaman web dari lima website berbeda. Metode pengujian yang akan digunakan adalah 4-Fold Cross Validation, sehingga 75% dari blok teks akan menjadi data latihan dan 25% dari blok teks akan menjadi data pengujian. Program jadi berupa Web Visualizer yang mengolah JSON file berisi hubungan antara halaman web yang didapatkan dari web crawler sehingga dapat dipresentasikan dalam sebuah grafik. Kesimpulan dari penelitian ini adalah bahwa kombinasi Scrapy, Splash, Neural Network Classifier dan D3 bekerja sangat baik untuk automasi ekstraksi konten artikel website di Internet sekaligus memvisualisasi hubungan antar halaman web. Deep Feed Forward Neural Network (DFFNN) dapat melakukan klasifikasi multi-class konten judul, penulis, dan isi artikel dengan baik selama template halaman web sudah pernah dilatih sebelumnya. DFFNN juga dapat melakukan klasifikasi binari untuk halaman web secara umum dengan F1-score 62.87%, dua kali lebih baik dari SVM yang hanya 31.28%.
Published: 1 October 2021
Journal of Intelligent System and Computation, Volume 3, pp 93-98; https://doi.org/10.52985/insyst.v3i2.193
Abstract:
Pada penelitian ini akan dibahas mengenai sebuah aplikasi yang dibuat secara khusus untuk mengkategorikan opini masyarakat terhadap sebuah berita Sepak Bola. Opini yang diolah diperoleh dari dua sumber, yaitu melalui hasil crawl situs berita olah raga dan opini yang ditambahkan oleh user sendiri pada aplikasi ini. Opini yang ada nantinya akan disajikan secara terpisah menurut kelompoknya; sentiment positive, negative, maupun netral. Proses klasifikasinya sendiri terdiri dari dua tahap. Tahap pertama adalah proses preprocessing yang terdiri atas proses tokenisasi, normalisasi, case folding, stop word removing, common word removing, stemming. Tahap kedua adalah mengklasifikasikan opini-opini tersebut dengan algoritma Baseline, dan Naive Bayes. Opini yang digunakan untuk proses klasifikasi yaitu opini yang menggunakan bahasa Inggris dari situs fifa.com dan goal.com. Dari perhitungan macroaveraged untuk setiap kelas, didapatkan akurasi 93,06%, presisi 81,90%, dan recall 92,67% untuk kelas sentiment positive. Dari perhitungan kelas sentiment negative didapatkan akurasi 87,73%, presisi 96,29%, dan recall 83,63%. Dari perhitungan kelas sentiment netral didapatkan akurasi 92,26%, presisi 64,44%, dan recall 90,37%. Kesimpulan yang diperoleh saat penelitian ini dari awal hingga akhir adalah, proses crawling yang digunakan untuk mendapatkan berita dan komentar berita sangat membantu dalam penambahan konten website, tetapi banyak sekali komentar berita yang diperoleh kurang cocok untuk proses klasifikasi.
Published: 1 October 2021
Journal of Intelligent System and Computation, Volume 3, pp 99-105; https://doi.org/10.52985/insyst.v3i2.189
Abstract:
Pada saat ini, teknologi mobile telah berkembang dengan pesat. Dalam kesehariannya, manusia tidak dapat lepas dari handphone. Hal ini menyebabkan munculnya berbagai aplikasi dan game yang bertujuan tentu saja untuk membantu ataupun memberikan kesenangan kepada penggunanya. Saat ini perkembangan game, juga sangat pesat dan telah mencapai titik dimana berbagai jenis game dikembangkan. Tidak hanya berhenti pada perkembangan jenis game, bahkan cara bermain dari game itu sendiri juga ikut berkembang. Yang dulunya permainan mobile dilakukan secara virtual, saat ini permainan sudah menyentuh area Augmented Reality (AR) dimana pemain dapat melihat benda-benda tidak nyata (buatan) dalam dunia nyata (dunia manusia). Walaupun permainan AR semakin berkembang, tetapi masih sedikit permainan AR bergenre Virtual Pet. Penelitian ini bertujuan untuk mengembangkan Permainan Virtual Pet dan mengukur tingkat kesenangan dalam memainkan permainan ini. Permainan dikembangkan dengan menggunakan Unity Game Engine dengan bantuan package AR Foundation dan penyimpanan data pada Firebase. Ujicoba akan dilakukan kepada 40 orang (pria dan wanita) pemain game yang pernah bermain virtual pet sebelumnya. Hasil akhir ujicoba menunjukan bahwa dalam segi teknis permainan berjalan dengan baik dan disukai oleh pemain akan tetapi ada sebagian pemain yang tingkat kesenangannya rendah cenderung menengah hal ini dikarenakan gambar monster yang digunakan kurang menarik dan kurangnya fitur terkait monster itu sendiri.
Published: 1 October 2021
Journal of Intelligent System and Computation, Volume 3, pp 73-77; https://doi.org/10.52985/insyst.v3i2.205
Abstract:
Website koran harian Radar Tarakan memiliki kolom dengan judul “Warga Menulis” di mana menu ini merupakan sarana bagi pembaca untuk menyampaikan keluhan ataupun aspirasi mereka. Yang menjadi permasalahan, pesan pembaca atau opini yang ditampilkan bersifat to the point, hanya isi opini sesuai yang dikirim pembaca tanpa informasi tambahan kepada siapa opini tersebut ditujukan. Tujuan dari penelitian ini adalah melakukan klasifikasi data opini pada website koran harian Radar Tarakan khususnya opini yang berkaitan dengan fasilitas dan pelayanan publik. Klasifikasi merupakan suatu proses pengelompokkan data sesuai dengan kelas atau kategori yang telah ditentukan sebelumnya. Hipotesis yang dapat diambil adalah hasil klasifikasi diharapkan memiliki akurasi hingga 70%. Tahap awal dari proses klasifikasi yaitu preprocessing di mana pada tahap ini hal-hal yang dilakukan antara lain case folding, tokenizing, convert word, stopword removal (filtering) dan stemming. Algoritma yang digunakan dalam penelitian ini adalah Frequency Ratio Accumulation Method (FRAM). Pembuatan aplikasi menggunakan bahasa pemrograman PHP dan database MySQL. Hasil uji coba dari penelitian ini menunjukkan rata-rata akurasi yang diperoleh pada proses klasifikasi opini menggunakan algoritma FRAM adalah 60%. Besar kecilnya prosentase akurasi tergantung dari jumlah data latih yang digunakan. Semakin banyak jumlahnya dapat meningkatkan nilai akurasi akan tetapi hal ini akan berpengaruh terhadap efisiensi kinerja sistem.