Refine Search

New Search

Advanced search

Journal International Journal of Bioprinting

-
81 articles
Page of 9
Articles per Page
by
Chee Kai Chua
International Journal of Bioprinting, Volume 5; doi:10.18063/ijb.v5i1.184

Krishna Kolan, Jie Li, Sonya Roberts, Julie A. Semon, Jonghyun Park, Delbert E. Day, Ming C. Leu
International Journal of Bioprinting, Volume 5; doi:10.18063/ijb.v5i1.163

Abstract:Bioactive glasses have recently gained attention in tissue engineering and three-dimensional (3D) bioprinting because of their ability to enhance angiogenesis. Some challenges for developing biological tissues with bioactive glasses include incorporation of glass particles and achieving a 3D architecture mimicking natural tissues. In this study, we investigate the fabrication of scaffolds with a polymer/bioactive glass composite using near-field electrospinning (NFES). An overall controlled 3D scaffold with pores, containing random fibers, is created and aimed to provide superior cell proliferation. Highly angiogenic borate bioactive glass (13-93B3) in 20 wt.% is added to polycaprolactone (PCL) to fabricate scaffolds using the NFES technique. Scaffolds measuring 5 mm × 5 mm × 0.2 mm3 in overall dimensions were seeded with human adipose-derived mesenchymal stem cells to investigate the cell viability. The cell viability on PCL and PCL+glass scaffolds fabricated using NFES technique and 3D printing is compared and discussed. The results indicated higher cell proliferation on 3D biomimetic scaffolds fabricated by NFES technique
Dajing Gao, Jack Zhou
International Journal of Bioprinting, Volume 5; doi:10.18063/ijb.v5i1.172

Abstract:This paper mainly reviews the designs of electrohydrodynamic (EHD) inkjet printing machine and related applications. The review introduces the features of EHD printing and its possible research directions. Significant progress has been identified in research and development of EHD high-resolution printing as a direct additive manufacturing method, and more effort will be driven to this direction soon. An introduction is given about current trend of additive manufacturing and advantages of EHD inkjet printing. Designs of EHD printing platform and applications of different technologies are discussed. Currently, EHD jet printing is in its infancy stage with several inherent problems to be overcome, such as low yielding rate and limitation of stand-off height. Some potential modifications are proposed to improve printing performance. EHD high-resolution printing has already been applied to precision components for electronics and biotechnology applications. This paper gives a review about the latest research regarding EHD used for high-resolution inkjet printing. A starting base is given to help researchers and students to get a quick overview on the recent development of EHD printing technology.
Marisela Rodriguez-Salvador, Laura Ruiz-Cantu
International Journal of Bioprinting, Volume 5; doi:10.18063/ijb.v5i1.170

Abstract:Science and technology (S&T) on three-dimensional (3D) bioprinting is growing at an increasingly accelerated pace; one major challenge represents how to develop new solutions for frequent oral diseases such as periodontal problems and loss of alveolar bone. 3D bioprinting is expected to revolutionize the health industry in the upcoming years. In dentistry, this technology can become a significant contributor. This study applies a Competitive Technology Intelligence methodology to uncover the main S&T drivers in this domain. Looking at a 6-year period from 2012 to 2018 an analysis of scientific and technology production was made. Three principal S&T drivers were identified: Scaffolds development, analysis of natural and synthetic materials, and the study of scaffold characteristics. Innovative hybrid and multiphasic scaffolds are being developed to regenerate periodontal tissue and alveolar bone by combining them with stem cells from the pulp or periodontal ligament. To improve scaffolds performance, biodegradable synthetic polymers are often used in combination with bioceramics. The characteristics of scaffolds such as fiber orientation, porosity, and geometry, were also investigated. This research contributes to people interested in bringing innovative solutions to the health industry, particularly by applying state-of-the-art technologies such as 3D bioprinting, in this case for dental tissues and dental bone diseases.
Jie Sun, Linzhi Jing, Xiaotian Fan, Xueying Gao, Yung C.Liang
International Journal of Bioprinting, Volume 5; doi:10.18063/ijb.v5i1.164

Abstract:Electrohydrodynamic printing (EHDP) is able to precisely manipulate the position, size, and morphology of micro-/nano-fibers and fabricate high-resolution scaffolds using viscous biopolymer solutions. However, less attention has been paid to the influence of EHDP jet characteristics and key process parameters on deposited fiber patterns. To ensure the printing quality, it is very necessary to establish the relationship between the cone shapes and the stability of scaffold fabrication process. In this work, we used a digital microscopic imaging technique to monitor EHDP cones during printing, with subsequent image processing algorithms to extract related features, and a recognition algorithm to determine the suitability of Taylor cones for EHDP scaffold fabrication. Based on the experimental data, it has been concluded that the images of EHDP cone modes and the extracted features (centroid, jet diameter) are affected by their process parameters such as nozzle-substrate distance, the applied voltage, and stage moving speed. A convolutional neural network is then developed to classify these EHDP cone modes with the consideration of training time consumption and testing accuracy. A control algorithm will be developed to regulate the process parameters at the next stage for effective scaffold fabrication.
Nicanor Moldovan, Leni Maldovan, Michael Raghunath
International Journal of Bioprinting, Volume 5; doi:10.18063/ijb.v5i1.167

Abstract:The overarching principle of three-dimensional (3D) bioprinting is the placing of cells or cell clusters in the 3D space to generate a cohesive tissue microarchitecture that comes close to in vivo characteristics. To achieve this goal, several technical solutions are available, generating considerable combinatorial bandwidth: (i) Support structures are generated first, and cells are seeded subsequently; (ii) alternatively, cells are delivered in a printing medium, so-called “bioink,” that contains them during the printing process and ensures shape fidelity of the generated structure; and (iii) a “scaffold-free” version of bioprinting, where only cells are used and the extracellular matrix is produced by the cells themselves, also recently entered a phase of accelerated development and successful applications. However, the scaffold-free approaches may still benefit from secondary incorporation of scaffolding materials, thus expanding their versatility. Reversibly, the bioink-based bioprinting could also be improved by adopting some of the principles and practices of scaffold-free biofabrication. Collectively, we anticipate that combinations of these complementary methods in a “hybrid” approach, rather than their development in separate technological niches, will largely increase their efficiency and applicability in tissue engineering.
Christopher Chi Wai Tse, Shea Shin Ng, Jonathan Stringer, Sheila MacNeil, John W Haycock, Patrick J Smith
International Journal of Bioprinting, Volume 2; doi:10.18063/ijb.2016.01.001

Jia An, Chee Kai Chua, Vladimir Mironov
International Journal of Bioprinting, Volume 2; doi:10.18063/ijb.2016.01.003

Abstract:3D bioprinting has been invented for more than a decade. A disruptive progress is still lacking for the field to significantly move forward. Recently, the invention of 4D printing technology may point a way and hence the birth of 4D bioprinting. However, 4D bioprinting is not well defined and appear to have a few distinct early forms. In this article, a personal perspective on the early forms of 4D bioprinting is presented and a definition for 4D bioprinting is proposed.
Nazia Mehrban, Gui Zhen Teoh, Martin Anthony Birchall
International Journal of Bioprinting, Volume 2; doi:10.18063/ijb.2016.01.006

Abstract:Surgical limitations require alternative methods of repairing and replacing diseased and damaged tissue. Regenerative medicine is a growing area of research with engineered tissues already being used successfully in patients. However, the demand for such tissues greatly outweighs the supply and a fast and accurate method of production is still required.3D bioprinting offers precision control as well as the ability to incorporate biological cues and cells directly into the material as it is being fabricated. Having precise control over scaffold morphology and chemistry is a significant step towards controlling cellular behaviour, particularly where undifferentiated cells, i.e. stem cells, are used. This level of control in the early stages of tissue development is crucial in building more complex systems that morphologically and functionally mimic in vivo tissue.Here we review 3D printing hydrogel materials for tissue engineering purposes and the incorporation of cells within them. Hydrogels are ideal materials for cell culture. They are structurally similar to native extracellular matrix, have a high nutrient retention capacity, allow cells to migrate and can be formed under mild conditions. The techniques used to produce these unique materials, as well as their benefits and limitations are outlined.
Page of 9
Articles per Page
by