Ecology and Evolution

Journal Information
ISSN / EISSN : 2045-7758 / 2045-7758
Published by: Wiley (10.1002)
Total articles ≅ 7,687
Current Coverage
SCOPUS
SCIE
PUBMED
PMC
DOAJ
Archived in
EBSCO
SHERPA/ROMEO
Filter:

Latest articles in this journal

Published: 13 July 2021
Ecology and Evolution; doi:10.1002/ece3.7905

Abstract:
Ecosystems may suffer from the impact of invasive species. Thus, understanding the mechanisms contributing to successful invasions is fundamental for limiting the effects of invasive species. Most intuitive, the enemy release hypothesis predicts that invasive species might be more successful in the exotic range than resident sympatric species owing to the absence of coevolution with native enemies. Here, we test the enemy release hypothesis for the invasion of Europe by the North American spider Mermessus trilobatus. We compare the susceptibility of invasive Mermessus trilobatus and a native species with similar life history to a shared predator with which both species commonly co-occur in Europe. Contrary to our expectations, invasive Mermessus trilobatus were consumed three times more frequently by native predators than their native counterparts. Our study shows that invasive Mermessus trilobatus is more sensitive to a dominant native predator than local sympatric species. This suggests that the relation between the invasive spider and its native predator is dominated by prey naïveté rather than enemy release. Further studies investigating evolutionary and ecological processes behind the invasion success of Mermessus trilobatus, including testing natural parasites and rapid reproduction, are needed to explain its invasion success in Europe.
Ying‐Hui Jia, , Cang Ma, Jin‐Zhao Wang, Guang‐Qian Wang,
Published: 13 July 2021
Ecology and Evolution; doi:10.1002/ece3.7865

Abstract:
As an important species in the Qinghai-Tibet Plateau, the roles played by plateau pikas in grassland degradation and protection are controversial. The behavior characteristics and population density of this species are important in answering this question, but these traits have not been fully elucidated to date. Camera-capture methods have been used widely in recent years to characterize or calculate population density with the advantage of simple operation and nonintrusive investigation. However, establishing the relationship between actual population density and monitoring data with the condition that individual identification is not possible is a major challenge for this method. In this study, a model composed of a behavioral module and a burrow system module is proposed and applied to simulate the moving path of each individual pika. Based on Monte Carlo method, the model is used to develop the relationship between population density and recorded capture number, which is compared with the results derived from the random encounter model (REM) based on field observations. The simulated results mixed with the calculated density based on observation data could reach R2 = 0.98 using linear fitting, with proper parameter settings. A novel index named activity intensity of pikas per population density is also proposed, providing information on both the ecological physical characteristics and monitoring space. The influence of different parameters on this index, mainly the pika number per burrow system, pika activity time outside the burrow, and activity intensity, is discussed. The proposed methodology can be applied to different scenarios in further studies when behavioral characteristics of pikas change for such reasons as climate change and vegetation degradation.
, Meng‐Xia Feng, Yong‐Tao Tang, Chang‐Xing Yang, Xiao‐Lin Meng,
Published: 13 July 2021
Ecology and Evolution; doi:10.1002/ece3.7855

Abstract:
Freshwater shrimp are a rich species group, with a long and problematic taxonomic history attributed to their wide distribution and similar morphological characteristics. Shrimp diversity and species identification are important cornerstones for fisheries management. However, identification based on morphological characteristics is a difficult task for a nonspecialist. Abundant freshwater shrimp species are distributed in the waters of Henan Province, but investigations of freshwater shrimp are limited in this region, especially concerning molecular features. Here, we combined morphology and DNA barcodes to reveal the species diversity of freshwater shrimp in Henan province. A total of 1,200 freshwater shrimp samples were collected from 46 sampling sites, and 222 samples were chosen for further microscopic examination and molecular delimitation. We used tree-based methods (NJ, ML, and bPTP) and distance-based methods (estimation of the paired genetic distances and ABGD) to delimit species. The results showed that there were nine morphospecies based on morphological characteristics; all could effectively be defined by molecular methods, among which bPTP and ABGD defined 13 and 8 MOTUs, respectively. The estimation of the paired genetic distances of K2P and the p-distances had similar results. Mean K2P distances and p-distances within species were both equal to 1.2%. The maximum intraspecific genetic distances of all species were less than 2%, with the exception of Palaemon modestus and M. maculatum. Various analyses have shown that P. modestus and M. maculatum have a large genetic differentiation, which may indicate the existence of cryptic species. By contrast, DNA barcoding could unambiguously discriminate 13 species and detect cryptic diversity. Our results demonstrate the high efficiency of DNA barcoding to delimit freshwater shrimp diversity and detect the presence of cryptic species.
Jeronymo Dalapicolla, Ronnie Alves, Rodolfo Jaffé, , Eder Soares Pires, Gisele Lopes Nunes, Jovani Bernardino De Souza Pereira, José Tasso F. Guimarães, Mariana C. Dias, Taís Nogueira Fernandes, et al.
Published: 13 July 2021
Ecology and Evolution; doi:10.1002/ece3.7812

Abstract:
The quillwort Isoëtes cangae is a critically endangered species occurring in a single lake in Serra dos Carajás, Eastern Amazon. Low genetic diversity and small effective population sizes (N e) are expected for narrow endemic species (NES). Conservation biology studies centered in a single species show some limitations, but they are still useful considering the limited time and resources available for protection of species at risk of extinction. Here, we evaluated the genetic diversity, population structure, N e, and minimum viable population (MVP) of I. cangae to provide information for effective conservation programs. Our analyses were based on 55 individuals collected from the Amendoim Lake and 35,638 neutral SNPs. Our results indicated a single panmictic population, moderate levels of genetic diversity, and N e in the order of thousands, contrasting the expected for NES. Negative FIS values were also found, suggesting that I. cangae is not under risk of inbreeding depression. Our findings imply that I. cangae contains enough genetic diversity to ensure evolutionary potential and that all individuals should be treated as one demographic unit. These results provide essential information to optimize ex situ conservation efforts and genetic diversity monitoring, which are currently applied to guide I. cangae conservation plans.
, Maarten Costerus, Marcel Westenberg
Published: 13 July 2021
Ecology and Evolution; doi:10.1002/ece3.7908

Abstract:
Pennisetum Rich. or following recent taxonomic insights Cenchrus L. is a genus with some 120 species worldwide, especially in warm areas. The genus includes some crops, some ornamentals but mostly species that are considered weedy. The name of one of the weedy species Pennisetum setaceum (Forssk.) Chiov. is also found on labels of ornamental grasses as P. setaceum “Rubrum.” It has been debated to belong to a species on its own Pennisetum advena Wipff & Veldkamp or Cenchrus advena (Wipff & Veldkamp) Morrone, only known from cultivation, whereas others still adhere to a broader species concept of P. setaceum. The recent inclusion of P. setaceum on the EU List of Union concern has revitalized the discussion on this issue for commercial reasons. Based on a morphological and molecular comparison (ITS, rbcL, and the trnh-psbA intergenic spacer sequences) of the type specimen of P. advena, five of its “cultivars” in trade and collections of P. setaceum from different regions of the world we conclude that plants currently in trade in Western Europe belong to a separate species P. advena. A drooping inflorescence is consistent as is the difference in width of the leaf blade, the leaf blade being flat or involute, the central vein being swollen or not, and the length of the stipe being 0.3–1.1 mm in P. advena and 1.1–3.1 mm in P. setaceum. On the chloroplast markers rbcL and trnH-psbA, the species consistently differ in 2 and 4 base pairs, respectively. On the nuclear ITS sequence, there is only 90% overlap between the two species. This justifies these ornamentals to be excluded from the List of Union concern of EU regulation 1143/2014.
Ting Lv, , Yuping Liu, Tao Liu, Ruifang Liang, Zilan Ma,
Published: 13 July 2021
Ecology and Evolution; doi:10.1002/ece3.7831

Abstract:
Psammochloa villosa is an ecologically important desert grass that occurs in the Inner Mongolian Plateau where it is frequently the dominant species and is involved in sand stabilization and wind breaking. We sought to generate a preliminary demographic framework for P. villosa to support the future studies of this species, its conservation, and sustainable utilization. To accomplish this, we characterized the genetic diversity and structure of 210 individuals from 43 natural populations of P. villosa using amplified fragment length polymorphism (AFLP) markers. We obtained 1,728 well-defined amplified bands from eight pairs of primers, of which 1,654 bands (95.7%) were polymorphic. Results obtained from the AFLPs suggested effective alleles among populations of 1.32, a Nei's standard genetic distance value of 0.206, a Shannon index of 0.332, a coefficient of gene differentiation (GST) of 0.469, and a gene flow parameter (Nm) of 0.576. All these values indicate that there is abundant genetic diversity in P. villosa, but limited gene flow. An analysis of molecular variance (AMOVA) showed that genetic variation mainly exists within populations (64.2%), and we found that the most genetically similar populations were often not geographically adjacent. Thus, this suggests that the mechanisms of gene flow are surprisingly complex in this species and may occur over long distances. In addition, we predicted the distribution dynamics of P. villosa based on the spatial distribution modeling and found that its range has contracted continuously since the last interglacial period. We speculate that dry, cold climates have been critical in determining the geographic distribution of P. villosa during the Quaternary period. Our study provides new insights into the population genetics and evolutionary history of P. villosa in the Inner Mongolian Plateau and provides a resource that can be used to design in situ conservation actions and prioritize sustainable utilization.
Published: 13 July 2021
Ecology and Evolution; doi:10.1002/ece3.7732

Abstract:
Advances in experimental design and equipment have simplified the collection of maximum metabolic rate (MMR) data for a more diverse array of water-breathing animals. However, little attention has been given to the consequences of analytical choices in the estimation of MMR. Using different analytical methods can reduce the comparability of MMR estimates across species and studies and has consequences for the burgeoning number of macroecological meta-analyses using metabolic rate data. Two key analytical choices that require standardization are the time interval, or regression window width, over which MMR is estimated, and the method used to locate that regression window within the raw oxygen depletion trace. Here, we consider the effect of both choices by estimating MMR for two shark and two salmonid species of different activity levels using multiple regression window widths and three analytical methods: rolling regression, sequential regression, and segmented regression. Shorter regression windows yielded higher metabolic rate estimates, with a risk that the shortest windows (<1-min) reflect more system noise than MMR signal. Rolling regression was the best candidate model and produced the highest MMR estimates. Sequential regression models consistently produced lower relative estimates than rolling regression models, while the segmented regression model was unable to produce consistent MMR estimates across individuals. The time-point of the MMR regression window along the oxygen consumption trace varied considerably across individuals but not across models. We show that choice of analytical method, in addition to more widely understood experimental choices, profoundly affect the resultant estimates of MMR. We recommend that researchers (1) employ a rolling regression model with a reliable regression window tailored to their experimental system and (2) explicitly report their analytical methods, including publishing raw data and code.
, , , Clara S. Jenck, , , Angie Davidson, Jasmine M. Andersen, Rachel K. Bennet, Amarin Gifford, et al.
Published: 10 July 2021
Ecology and Evolution; doi:10.1002/ece3.7835

Abstract:
Anthropogenic disturbances associated with urban ecosystems can create favorable conditions for populations of some invasive plant species. Light pollution is one of these disturbances, but how it affects the growth and establishment of invasive plant populations is unknown. Cheatgrass (Bromus tectorum) is a problematic invasive species where it has displaced native grassland communities in the United States, but to our knowledge, there have been no studies of the ecological factors that affect cheatgrass presence in urban ecosystems. We conducted field surveys in urban alleys in Denver, Colorado, to compare the presence of cheatgrass at sites with and without artificial light at night (hereafter artificial light) from streetlights. These streetlights are mounted on utility poles, which cause ground disturbance when installed in alleys; we were able to test the independent effect of poles on cheatgrass establishment because not all poles have streetlights on them. We found that cheatgrass was positively associated with the presence of streetlights and to a lesser extent poles. In addition to cheatgrass, we also found that other plants were positively associated with the presence of both poles and streetlights. Our results suggest that artificial light may benefit the occurrence of cheatgrass and other plant species in urban settings. While invasive populations of cheatgrass in wild habitats attract the most attention from managers, we suggest more consideration for this grass in urban environments where its growth and establishment benefit from anthropogenic changes.
, Vanessa Henning, Liliane Ruess
Published: 9 July 2021
Ecology and Evolution; doi:10.1002/ece3.7894

Abstract:
Quantitative fatty acid signature analysis (QFASA) as a biochemical tool to study the diet composition of predators is frequently used in marine ecology to infer trophic links in vertebrate consumers. However, the potential and challenges of this method in other ecosystems have only recently been studied. The application in soil ecosystems leads to hurdles not encountered in the marine, such as the low similarity of fatty acid signatures between resource and consumer. So far, diet estimation attempts have been semisuccessful, necessitating to adapt QFASA for use in soil food webs. Dietary fat content may play an important role, as it influences consumer metabolism, and thus calibration coefficients for fatty acid trophic transfer. A series of feeding trials with baker's yeast spiked with five different pure fatty acids at various concentrations was conducted with Collembola, and the changes in calibration coefficients were observed. From there, equations were gained through regression analysis and new sets of calibration coefficients were calculated. QFASA was applied on a range of basal resources and the results compared with previously defined calibration coefficients. Calibration coefficients changed with the proportion of fatty acids in the diet and differed between the three Collembolan species. The re-estimation of diets showed an improvement of model performance by the new calibration coefficients and indicated several modes of fatty acid assimilation. These greatly influence the outcome of diet estimation, for example, algal and bacterial diets are likely underestimated due to high metabolic turnover rates. The application of QFASA in soil ecosystems remains challenging. The variation in calibration coefficients and the resulting decrease in estimation deviation indicate the merit of calculating calibration coefficients from consumer signatures through linear or exponential equations. Ideally, the method should, when extended to the entire fatty acid signature, allow correct determination of consumer diets in soil food webs.
, Min Pang, Fangyuan Qu, Zhao Li, Meng Xiao,
Published: 9 July 2021
Ecology and Evolution; doi:10.1002/ece3.7895

Abstract:
Stable isotope analysis is a universally recognized and efficient method of indicating trophic relationships that is widely applied in research. However, variation in stable isotope ratios may lead to inaccuracies due to the effects of complex environmental conditions. This research compared the carbon and nitrogen isotopic niches of fish communities between diverse biotopes around the Yellow River estuary and adjacent sea areas, with the aim of revealing distinctions in stable isotopic niche metrics, trophic positions, and feeding preferences. Our analysis of the food source contribution indicated that allochthonous sources were considered major energy sources in estuarine areas directly affected by Yellow River-diluted water, while autochthonous benthic and pelagic producers dominated carbon input into the food web in Laizhou Bay and the open water. A significant variation in the fish δ15N characteristic was found within estuarine adjacent regions, so, together with the results from previous studies, we deemed the local high concentration of dissolved inorganic nitrogen as the original trigger of the abnormal δ15N characteristic in fishes via a transport process along food chains. These results provide a new perspective on the natural distinction of carbon and nitrogen isotopic niches. The detailed data reported here enhance our understanding of variations in fish communities in estuarine ecosystems.
Back to Top Top