Annual Review of Physiology

Journal Information
ISSN / EISSN : 0066-4278 / 1545-1585
Published by: Annual Reviews (10.1146)
Total articles ≅ 3,033
Current Coverage
SCOPUS
SCIE
MEDICUS
MEDLINE
PUBMED
Archived in
EBSCO
SHERPA/ROMEO
Filter:

Latest articles in this journal

Published: 10 February 2021
Annual Review of Physiology, Volume 83, pp 127-151; https://doi.org/10.1146/annurev-physiol-022020-045449

Abstract:
GDF15 is a cell activation and stress response cytokine of the glial cell line–derived neurotrophic factor family within the TGF-β superfamily. It acts through a recently identified orphan member of the GFRα family called GFRAL and signals through the Ret coreceptor. Cell stress and disease lead to elevated GDF15 serum levels, causing anorexia, weight loss, and alterations to metabolism, largely by actions on regions of the hindbrain. These changes restore homeostasis and, in the case of obesity, cause a reduction in adiposity. In some diseases, such as advanced cancer, serum GDF15 levels can rise by as much as 10–100-fold, leading to an anorexia-cachexia syndrome, which is often fatal. This review discusses how GDF15 regulates appetite and metabolism, the role it plays in resistance to obesity, and how this impacts diseases such as diabetes, nonalcoholic fatty liver disease, and anorexia-cachexia syndrome. It also discusses potential therapeutic applications of targeting the GDF15-GFRAL pathway and lastly suggests some potential unifying hypotheses for its biological role.
Published: 10 February 2021
Annual Review of Physiology, Volume 83, pp 257-278; https://doi.org/10.1146/annurev-physiol-031620-095446

Abstract:
Adipose tissue depots in distinct anatomical locations mediate key aspects of metabolism, including energy storage, nutrient release, and thermogenesis. Although adipocytes make up more than 90% of adipose tissue volume, they represent less than 50% of its cellular content. Here, I review recent advances in genetic lineage tracing and transcriptomics that reveal the identities of the heterogeneous cell populations constituting mouse and human adipose tissues. In addition to mature adipocytes and their progenitors, these include endothelial and various immune cell types that together orchestrate adipose tissue development and functions. One salient finding is the identification of progenitor subtypes that can modulate adipogenic capacity through paracrine mechanisms. Another is the description of fate trajectories of monocyte/macrophages, which can respond maladaptively to nutritional and thermogenic stimuli, leading to metabolic disease. These studies have generated an extraordinary source of publicly available data that can be leveraged to explore commonalities and differences among experimental models, providing new insights into adipose tissues and their role in metabolic disease.
Published: 10 February 2021
Annual Review of Physiology, Volume 83, pp 205-230; https://doi.org/10.1146/annurev-physiol-031220-095215

Abstract:
Temperature is a universal cue and regulates many essential processes ranging from enzymatic reactions to species migration. Due to the profound impact of temperature on physiology and behavior, animals and humans have evolved sophisticated mechanisms to detect temperature changes. Studies from animal models, such as mouse, Drosophila, and C. elegans, have revealed many exciting principles of thermosensation. For example, conserved molecular thermosensors, including thermosensitive channels and receptors, act as the initial detectors of temperature changes across taxa. Additionally, thermosensory neurons and circuits in different species appear to adopt similar logic to transduce and process temperature information. Here, we present the current understanding of thermosensation at the molecular and cellular levels. We also discuss the fundamental coding strategies of thermosensation at the circuit level. A thorough understanding of thermosensation not only provides key insights into sensory biology but also builds a foundation for developing better treatments for various sensory disorders.
Konstantinos-Dionysios Alysandratos, Michael J. Herriges,
Published: 10 February 2021
Annual Review of Physiology, Volume 83, pp 529-550; https://doi.org/10.1146/annurev-physiol-041520-092904

Abstract:
The mammalian lung epithelium is composed of a wide array of specialized cells that have adapted to survive environmental exposure and perform the tasks necessary for respiration. Although the majority of these cells are remarkably quiescent during adult lung homeostasis, a growing body of literature has demonstrated the capacity of these epithelial lineages to proliferate in response to injury and regenerate lost or damaged cells. In this review, we focus on the regionally distinct lung epithelial cell types that contribute to repair after injury, and we address current controversies regarding whether elite stem cells or frequent facultative progenitors are the predominant participants. We also shed light on the newly emerging approaches for exogenously generating similar lung epithelial lineages from pluripotent stem cells.
Published: 10 February 2021
Annual Review of Physiology, Volume 83, pp 303-330; https://doi.org/10.1146/annurev-physiol-031620-093815

Abstract:
The global prevalence of metabolic diseases such as type 2 diabetes mellitus, steatohepatitis, myocardial infarction, and stroke has increased dramatically over the past two decades. These obesity-fueled disorders result, in part, from the aberrant accumulation of harmful lipid metabolites in tissues not suited for lipid storage (e.g., the liver, vasculature, heart, and pancreatic beta-cells). Among the numerous lipid subtypes that accumulate, sphingolipids such as ceramides are particularly impactful, as they elicit the selective insulin resistance, dyslipidemia, and ultimately cell death that underlie nearly all metabolic disorders. This review summarizes recent findings on the regulatory pathways controlling ceramide production, the molecular mechanisms linking the lipids to these discrete pathogenic events, and exciting attempts to develop therapeutics to reduce ceramide levels to combat metabolic disease.
Published: 10 February 2021
Annual Review of Physiology, Volume 83, pp 405-427; https://doi.org/10.1146/annurev-physiol-021119-034520

Abstract:
The cardinal properties of adult tissue stem cells are self-renewal and the ability to generate diverse resident cell types. The daily losses of terminally differentiated intestinal, skin, and blood cells require “professional” stem cells to produce replacements. This occurs by continuous expansion of stem cells and their immediate progeny, followed by coordinated activation of divergent transcriptional programs to generate stable cells with diverse functions. Other tissues turn over slowly, if at all, and vary widely in strategies for facultative stem cell activity or interconversion among mature resident cell types (transdifferentiation). Cell fate potential is programmed in tissue-specific configurations of chromatin, which restrict the complement of available genes and cis-regulatory elements, hence allowing specific cell types to arise. Using as a model the transcriptional and chromatin basis of cell differentiation and dedifferentiation in intestinal crypts, we discuss here how self-renewing and other tissues execute homeostatic and injury-responsive stem cell activity.
Paula Q. Barrett, Nick A. Guagliardo, Douglas A. Bayliss
Published: 10 February 2021
Annual Review of Physiology, Volume 83, pp 451-475; https://doi.org/10.1146/annurev-physiol-030220-113038

Abstract:
Aldosterone excess is a pathogenic factor in many hypertensive disorders. The discovery of numerous somatic and germline mutations in ion channels in primary hyperaldosteronism underscores the importance of plasma membrane conductances in determining the activation state of zona glomerulosa (zG) cells. Electrophysiological recordings describe an electrically quiescent behavior for dispersed zG cells. Yet, emerging data indicate that in native rosette structures in situ, zG cells are electrically excitable, generating slow periodic voltage spikes and coordinated bursts of Ca2+ oscillations. We revisit data to understand how a multitude of conductances may underlie voltage/Ca2+ oscillations, recognizing that zG layer self-renewal and cell heterogeneity may complicate this task. We review recent data to understand rosette architecture and apply maxims derived from computational network modeling to understand rosette function. The challenge going forward is to uncover how the rosette orchestrates the behavior of a functional network of conditional oscillators to control zG layer performance and aldosterone secretion.
, Allison H. Kowalsky, Jun Hee Lee
Published: 10 February 2021
Annual Review of Physiology, Volume 83, pp 381-403; https://doi.org/10.1146/annurev-physiol-031620-092317

Abstract:
Sestrins are a family of proteins that respond to a variety of environmental stresses, including genotoxic, oxidative, and nutritional stresses. Sestrins affect multiple signaling pathways: AMP-activated protein kinase, mammalian target of rapamycin complexes, insulin-AKT, and redox signaling pathways. By regulating these pathways, Sestrins are thought to help adapt to stressful environments and subsequently restore cell and tissue homeostasis. In this review, we describe how Sestrins mediate physiological stress responses in the context of nutritional and chemical stresses (liver), physical movement and exercise (skeletal muscle), and chemical, physical, and inflammatory injuries (heart). These findings also support the idea that Sestrins are a molecular mediator of hormesis, a paradoxical beneficial effect of low- or moderate-level stresses in living organisms.
Jo B. Henningsen, Camilla Scheele
Published: 10 February 2021
Annual Review of Physiology, Volume 83, pp 279-301; https://doi.org/10.1146/annurev-physiol-032420-042950

Abstract:
Since the discovery of functionally competent, energy-consuming brown adipose tissue (BAT) in adult humans, much effort has been devoted to exploring this tissue as a means for increasing energy expenditure to counteract obesity. However, despite promising effects on metabolic rate and insulin sensitivity, no convincing evidence for weight-loss effects of cold-activated human BAT exists to date. Indeed, increasing energy expenditure would naturally induce compensatory feedback mechanisms to defend body weight. Interestingly, BAT is regulated by multiple interactions with the hypothalamus from regions overlapping with centers for feeding behavior and metabolic control. Therefore, in the further exploration of BAT as a potential source of novel drug targets, we discuss the hypothalamic orchestration of BAT activity and the relatively unexplored BAT feedback mechanisms on neuronal regulation. With a holistic view on hypothalamic-BAT interactions, we aim to raise ideas and provide a new perspective on this circuit and highlight its clinical relevance.
John W. Osborn, Roman Tyshynsky, Lucy Vulchanova
Published: 10 February 2021
Annual Review of Physiology, Volume 83, pp 429-450; https://doi.org/10.1146/annurev-physiol-031620-091656

Abstract:
Renal sympathetic (efferent) nerves play an important role in the regulation of renal function, including glomerular filtration, sodium reabsorption, and renin release. The kidney is also innervated by sensory (afferent) nerves that relay information to the brain to modulate sympathetic outflow. Hypertension and other cardiometabolic diseases are linked to overactivity of renal sympathetic and sensory nerves, but our mechanistic understanding of these relationships is limited. Clinical trials of catheter-based renal nerve ablation to treat hypertension have yielded promising results. Therefore, a greater understanding of how renal nerves control the kidney under physiological and pathophysiological conditions is needed. In this review, we provide an overview of the current knowledge of the anatomy of efferent and afferent renal nerves and their functions in normal and pathophysiological conditions. We also suggest further avenues of research for development of novel therapies targeting the renal nerves.
Back to Top Top